
hal2assemblyHub Documentation

hal2assemblyHub.py is a python wrapper that produces necessary data and files for cre-
ating the comparative assembly hubs through the UCSC genome browser. The program,
which is part of the HAL tools package (https://github.com/glennhickey/hal), takes in
the multiple sequence alignment in HAL format [1] and (optionally) any available set of an-
notations, either in BED or WIG format (http://genome.ucsc.edu/FAQ/FAQformat.html)
and creates an output directory that contains all necessary data to build browsers for all
input genomes and infered ancestral genomes as well as various annotation tracks. The lo-
cation of the “hub.txt” file, addressable as a public URL, is pasted into the UCSC browser
hub page to view the set of browsers.

1

Contents

1 Quick Start 3

2 Procedural Levels of Detail 4

3 Browsers With Annotation Tracks 5
3.1 Annotations computed from the alignment 5
3.2 Annotations provided by users . 6

4 Update Comparative Assembly Hubs 12

5 Manipulate Hub Display 12

6 Outputs 13

7 Track Documentation 15
7.1 Alignability . 15
7.2 GC Percent . 15
7.3 Conservation . 16
7.4 Alignments and Lifted-Over Annotations . 18
7.5 RepeatMasker . 20

8 hal2assemblyHub Usage Summary 23

2

1 Quick Start

From a multiple sequence alignment, users can quickly create browsers for all input genomes
using the following command:

hal2assemblyHub.py <halFile> <outDir> –lod

or to run in parallel:

hal2assemblyHub.py <halFile> <outDir> –lod –batchSystem <batchType>

or

hal2assemblyHub.py <halFile> <outDir> –lod –maxThreads <#ofThreads>

• halF ile is the HAL-formatted MSA file.

• outDir is the output directory where all the generated files are written into. Among
the output files is a file named “hub.txt”, which the users will upload to the UCSC
genome browser (similarly to how a track hub is created [2], see http://genome.ucsc.
edu/goldenPath/help/hgTrackHubHelp.html for more details) and the comparative
assembly hubs will be created.

• Option –lod is specified to compute the levels of detail, which is recommended for large
datasets.

• Option –batchSystem: the type of batch system to run the job(s). See https://

github.com/benedictpaten/jobTree for more details.

• Option –maxThreads : number of threads (processes) to use when running in single
machine allows mode. Increasing this will allow more jobs to run concurrently when
running on a single machine. Default=4. See https://github.com/benedictpaten/

jobTree for more details.

Examples:

hal2assemblyHub.py alignment.hal outdir –lod
hal2assemblyHub.py alignment.hal outdir –lod –batchSystem gridEngine
hal2assemblyHub.py alignment.hal outdir –lod –maxThreads 24

3

2 Procedural Levels of Detail

To improve browsing speed, especially for browsing at all levels of resolution (from individual
bases to whole chromosomes) of large datasets, we compute multiple representations of the
original alignment at different levels of detail. HAL Tools provide programs to resample a
HAL graph to compute coarser-grained levels of detail to speed up subsequent analysis at
different scales. Please see https://github.com/glennhickey/hal/, “Levels of Detail” for
more information.

hal2assemblyHub takes care of generating levels of detail for the alignment if option
–lod is specified. Example:

hal2assemblyHub.py alignment.hal outdir –lod

By default, no level of detail is generated. Users can independently generate them using the
HAL Tools’ halLodInterpolate.py. Generating levels of detail can be time-consuming. Users
can provide hal2assemblyHub with pre-computed levels of detail (and avoid re-computing
them) by the options –lodTxtFile and –lodDir :

hal2assemblyHub.py alignment.hal outdir –lod –lodTxtFile lod.txt –lodDir
loddir/

lod.txt and loddir are output files of halLodInterpolate.py. See “halLodInterpolate.py -h”
for explanations of more options.

• lod.txt is output text file with links to interpolated hal files, with each file is associated
a value stating its minimum suggested query range (in bases).

• loddir is the path of the directory where interpolated hal files are stored.

4

3 Browsers With Annotation Tracks

3.1 Annotations computed from the alignment

hal2assemblyHub.py takes care of computing various annotation tracks from the alignment,
including “Alignability”, “Conservation”, “GC Content” and “Clade Exclusive Regions”.

Examples:

hal2assemblyHub.py alignment.hal outdir –lod –cladeExclusiveRegions
–alignability –gcContent –conservation conservationRegions.bed –
conservationGenomeName hg19

• –cladeExclusiveRegions : for each node in the phylogenetic tree of the genomes
in the alignment, regions that are genome-specific (leaf-node) or clade-specific
(internal node), i.e. present only in genomes within the clade and absent in
other genomes, are printed out in bigbed-formatted files. These files will be lo-
cated at outdir/liftoverbed/CladeExclusive. The resulting comparative assem-
bly hub contains one track for each genome. See –maxOutgroupGenomes and –
minIngroupGenomes options (in the Usage Summary section 8 below) for adjusting
the definition of “clade exclusive”.

• –alignability : for each node GENOME in the tree (each genome and each ancestral
genome), computes the wiggle track (the Alignability track) of the number of other
unique genomes (including ancestral genomes) each base aligns to. The computed
bigwig-formatted file is located at outdir/GENOME/GENOME.alignability.bw.

• –gcContent : for each node GENOME, computes the GC content (gcContent track)
of that genome, following instructions at http://genomewiki.ucsc.edu/index.php/
Browser_Track_Construction#GC_Percent. The computed bigwig file is located at
outdir/GENOME/GENOME.gc.bw.

• –conservation: computes the conservation track for each genome, showing mea-
surements of evolutionary conservation using the phyloP program from the PHAST
package. See Section 7 for more details. conservationRegions.bed is the bed-formatted
file (see http://genome.ucsc.edu/FAQ/FAQformat.html#format1) providing neutral
regions of a reference genome for creating a neutral model. By default, it expects the
neutral regions to be coding genes and uses 4fold degenerate site within those genes
(which it extracts automatically). The neutral regions could also be ancestral repeats
(or anything else). An example of this file:

chr1 363 2826 gene1
chr1 2827 3760 gene2

5

The fields above are < Chromosome >, < Start−coordinate >, < End−coordinate >
and < Gene − name >. The chromosome and the coordinates must be consistent
with the input HAL file (e.g. same chromosome name, an example of a common
inconsistency is when the HAL file has “1” and the bed file has “chr1”).

• –conservationGenomeName: name of the reference genome used to provide the neutral
region information in −−conservation. This must be consistent with the genome name
in HAL file as well.
The computed conservation tracks are stored at outdir/conservation.

Computing conservation scores could be expensive. Use option –conservationDir to use
pre-computed conservation scores:

hal2assemblyHub.py alignment.hal outdir –lod –conservationDir myConser-
vationDir/

• –conservationDir : Directory contains conservation bigwigs. Format:
myConservationDir/

Genome1 phyloP.bw

Genome2 phyloP.bw

. . .

Genome1, Genome2, etc. are genome names and must be consistent with names in
the input HAL file.

3.2 Annotations provided by users

Currently, hal2assemblyHub.py supports two annotation formats: bed (or big bed) and
wiggle (or bigwig) (see http://genome.ucsc.edu/FAQ/FAQformat.html). Example anno-
tations are genes, transcription levels, histone modifications, etc.

Example 1:

hal2assemblyHub.py alignment.hal outdir –lod –bedDirs Genes –tabBed

6

• –bedDirs : comma separated list of paths to different annotation directories, one
directory per annotation type. In this example, there is only one annotation type,
which is Genes. The format of each annotation directory is:

Genes/

Genome1/

bedfile1.bed

bedfile2.bed

. . .

Genome2/

. . .

. . .

bedfile1.bed and bedfile2.bed are gene annotations of Genome1. By default,
these annotations will be lifted-over(/mapped/translated) to all other genomes in the
alignment, unless options –noBedLiftover is specified. Please only include genomes
that have annotations. For example, if only Genome1 and Genome2 have gene
annotations, the Genes/ directory should only have Genome1/ and Genome2/. Note,
names of Genome1 and Genome2 must be consistent with the genome names in
the alignment. The bed file names may be anything as long as they have they .bed
extension. The name of each annotation directory (Genes in this case) will be used as
the track name on the browser. For example, browser of Genome1 will have a track
named “Genome1 Genes” and a track named “Genome2 Lifted-over Genes”.

• –tabBed: if the input bed files are tab-separated (recommended), this option must
be specified. The default settings assume space-delimited. If the bed files are space-
delimited, the field values must not contain any space.

Example 2:

hal2assemblyHub.py alignment.hal outdir –lod –bedDirs
allAnnotations/Genes,allAnnotations/CpG-Islands,allAnnotations/Variations –
tabBed

In this example, there are three different annotation types: Genes, CpG-Islands, and
Variations, all located within the directory allAnnotations/.

Example 3:

7

hal2assemblyHub.py alignment.hal outdir –lod –bedDirs Genes,CpG-
Islands,Variations –tabBed –noBedLiftover

• –noBedLiftover : if specified, the lift− over step is disable, i.e. only creates track for
the input annotations and does not lift/map these annotations to other genomes.

Example 4:

hal2assemblyHub.py alignment.hal outdir –lod –finalBigBedDirs Genes,CpG-
Islands,Variations –tabBed

• –finalBigBedDirs : comma separated list of directories containing final big bed files to
be displayed. No liftover will be done for these files. Each directory represents a type
of annotation. This option is useful when annotations have been previous lifted-over
and can just be fed to the pipeline, to avoid rerunning the lift-over processes. Format
of each directory:
bbDir/

queryGenome1/

targetGenome1.bb

targetGenome2.bb

. . .

queryGenome2/

. . .
Annotations of queryGenome have been lifted-over (mapped) to targetGenomes
and will be displayed on each targetGenome’s browser. For example, if bbDir is
Genes, targetGenome1.bb contains the gene annotations of queryGenome1 mapped
to targetGenome1, in bigBed format. queryGenome and targetGenome are the same
for the original (non lifted-over) annotations (e.g. gene annotations of queryGenome1).

Note: it is not required that each annotation must be lifted over to all other
genomes. The pipeline prepares one track for each bigBed file - users can choose which
tracks to include.

Example 5:

8

hal2assemblyHub.py alignment.hal outdir –lod –bedDirs Genes –
finalBigBedDirs CpG-Islands,Variations –tabBed

In this example, the pipeline will not perform lifting-over for the CpG-Islands and
V ariations annotations (in bigBed format) - the corresponding tracks will be displayed on
the resulting comparative hubs “as is”, while the Genes annotations (in bed format) will
be lifted-over. This is applicable when users wish to include new annotations into their
comparative assembly hubs, or to update some annotations while keeping the rest intact.

Example 6:

hal2assemblyHub.py alignment.hal outdir –lod –bedDirs Genes,CpG-Islands
–bedDirs2 Variations –tabBed

• –bedDirs2 : Similar to –bedDirs, except the tracks for the annotations specified here
will be kept separately and out of the composite track. In this case, the Genes and
CpG-Islands tracks will be included in the composite track (hubCentral) while the
V ariations tracks will be on its own.

Example 7:

hal2assemblyHub.py alignment.hal outdir –lod –finalBigBedDirs Genes,CpG-
Islands –finalBigBedDirs2 Variations –tabBed

• –finalBigBedDirs2 : Similar to –finalBigBedDirs, except these tracks will be kept sep-
arately and out of the composite track.

Example 8:

hal2assemblyHub.py alignment.hal outdir –lod –bedDirs Genes,CpG-Islands
–tabBed –wigDirs Transcription,Methylation

• –wigDirs : similar to –bedDirs, but for wiggle format files.

9

Item Searching of Annotation Tracks

By default, hal2assemblyHub.py index the name column of the input bed files so that when
browsing the hubs, users can quickly search for specific items using their names. Additional
fields can be added to the bed files and the pipeline will index them for searching. When
there are additional fields in the bed files, an “.as” (AutoSQL) format file is required for each
input bed directory. See http://genome.ucsc.edu/goldenPath/help/bigBed.html#Ex3

for the format of the “.as” file.

This is applicable when users want to be able to search genes by various IDs, such
as accession numbers and common names. If the name column in the bed file is the
accession number, add an additional field common-name to the bed file, and use the .as file
to specify this additional field. In Example1, the input Genes directory will be as followed:

• Genes/

Genome1/

myAsFile.as

bedfile1.bed

bedfile2.bed

. . .

Genome2/

anotherAsFile.as

. . .

. . .

Example of an .as file:

table geneEscherichiaColi042Uid161985
“EscherichiaColi042Uid161985 genes with additional fields commonName, synonym
and product”
(
string chrom; “Reference sequence chromosome or scaffold”
uint chromStart; “Start position of feature on chromosome”
uint chromEnd; “End position of feature on chromosome”
string name; “Name of gene”
uint score; “Score”
char[1] strand; “+ or - for strand”
uint thickStart; “Coding region start”
uint thickEnd; “Coding region end”
uint reserved; “RGB value”
int blockCount; “Number of blocks”
int[blockCount] blockSizes; “A comma-separated list of block sizes”

10

int[blockCount] chromStarts; “A comma-separated list of block starts”
string commonName; “Gene common name”
string synonym; “Gene synonym”
string product; “Gene product”
)

In this case, there are three extra fields: commonName, synonym and product, and those
three fields, together with the name field, will be indexed for searching, i.e. when browsing
the resulting hub browsers, users can search a gene by its name, common name, synonym
or product.

11

4 Update Comparative Assembly Hubs

The simplest way to update comparative assembly hubs is to rerun hal2assemblyHub.py and
utilize the following options:

• –twobitdir

• –lodTxtFile

• –lodDir

• –finalBigBedDirs

• –finalBigBedDirs2

• –conservationDir

See the above sections and the Usage Summary section 8 for more details.

5 Manipulate Hub Display

To manipulate the hub displays, see the following options:

• –hub

• –shortLabel

• –longLabel

• –email

• –genomes

• –rename

• –tree

• –url

12

6 Outputs

Comparative Assembly Hubs are built utilizing the Assembly Hub function of the UCSC
Genome Browser. Many of the output files produced by the Comparative Assembly
Hub Pipeline are explained in details here: http://genomewiki.ucsc.edu/index.php/

Assembly_Hubs. To avoid potential problems, we recommend users to provide an empty
outdir when running hal2assemblyHub.py.

The output directory may contain:

1. hub.txt: The primary URL reference for the constructed comparative assembly hubs.
Please paste the URL of the location of this file to the UCSC genome browser to load
the hubs. This is similar to how a track hub is created, please see http://genome.

ucsc.edu/goldenPath/help/hgTrackHubHelp.html for more instructions. This file
contains a short description of the hub properties, including the hub name, short label,
long label and contact email.

2. genomes.txt: list of genome assemblies included in the hub.

3. groups.txt: definitions of track groups. Track groups are the sections of related tracks
grouped together under the primary genome browser graphics display image.

4. Genome assembly directories: one directory is created for each genome assembly, one
directory for each ancestral genome, and one for the pangenome, if appropriate. Ex-
ample:

GenomeAssembly1/

GenomeAssembly1.2bit

chrom.sizes

trackDb.txt

description.html

GenomeAssembly1.alignability.bw: Bigwig file for the alignability track of
GenomeAssembly1, generated if option –alignability is specified when run-
ning hal2assemblyHub.py. Alignability is the number of genome assemblies
that have bases aligned with each base of the current assembly (mappability).

GenomeAssembly1.gc.bw: Bigwig file for the GC Content track of Genome-
Assembly1, generated if options –gcContent is specified when running
hal2assemblyHub.py.

repeatMasker/: subdirectory containing repeatMasker files of the
GenomeAssembly1, present if option –rmskDir is specified when running
hal2asssemblyHub.py.

13

*** For more details on items (1) to (4), see:
http://genome.ucsc.edu/goldenPath/help/hgTrackHubHelp.htmlSetup ***

5. conservation/: Files necessary for the Conservation Track of each GenomeAssembly
Browser, generated if option –conservation is used.

6. hubTree.png: Phylogenetic tree image of the genome assemblies that is displayed in
the configuration page of each genome assembly’s hub browser.

7. liftoverbed/: All bed annotation files, including both input bed files and lifted-over
bed files. Example:

Annotation1/

GenomeAssembly1/

GenomeAssembly1.bb : annotation1 of GenomeAssembly1

GenomeAssembly2.bb : annotation1 of GenomeAssembly2 mapped onto
GenomeAssembly1

. . .

GenomeAssembly2/

. . .

. . .

Annotation#/

8. documentation/: documentation files automatically generated by
hal2assemblyHub.py. These files are used for documentation of the various
tracks on the hub browsers (see Section 7).

9. lod.txt: (Level of details) the lod text file generated by halLodInterpolate.py, or by
the pipeline (which calls halLodInterpolate.py) if option –lod is specified. The text
file contains links to interpolated hal files, with each file is associated a value stating
its minimum suggested query range (in bases).

10. lod/: the output directory of halLodInterpolate.py, containing the interpolated lod
files

11. alignment.hal: the multiple sequence alignment of the input genome assemblies, in
HAL format.

14

7 Track Documentation

The following track documentation are automatically generated by hal2assemblyHub.py
with each corresponding track, and is be displayed by the browser on the track information
page.

7.1 Alignability

The documentation for the Alignability track of all genomes is located at
outdir/documentation/alignability.html. To edit the track documentation, please
edit the alignability.html file.

Description

This track shows the number of genomes aligned to each position of the ref-
erence. The values range from 0 to the total number of input genomes and imputed
ancestral genomes.

Methods

Alignability was generated using the halAlignability script of the HAL tools package.

References

Hickey etal. HAL: a hierarchical format for storing and analyzing multiple
genome alignments. Bioinformatics. 2013 May;29(10):1341-1342

7.2 GC Percent

The documentation for the gcPercent track of all genomes is located at
outdir/documentation/gcPercent.html. To edit the track documentation, please edit
the gcPercent.html file.

Description

The GC percent track shows the percentage of G (guanine) and C (cytosine)
bases in 5-base windows. High GC content is typically associated with gene-rich
areas.

15

This track may be configured in a variety of ways to highlight different as-
pects of the displayed information. Click the ”Graph configuration help” link for an
explanation of the configuration options.

Methods

This track was generated following the UCSC GC Percent Track Construc-
tion instructions (http://genomewiki.ucsc.edu/index.php/Browser_Track_
Construction#GC_Percent), using the sequence information extracted from the
multiple sequence alignments.

References

The GC Percent graph presentation is by Hiram Clawson. The data was au-
tomatically generated using the HAL tools package.

7.3 Conservation

The documentation for the Conservation track of all genomes is located at
outdir/documentation/conservation.html. To edit the track documentation, please
edit the conservation.html file.

Description

This track shows measurements of evolutionary conservation using the phyloP
program from the PHAST package (http://compgen.bscb.cornell.edu/phast/),
for all genomes in the comparative assembly hub. The multiple alignments were
generated using progressiveCactus.

PhyloP separately measures conservation at individual columns, ignoring the
effects of their neighbors. PhyloP is appropriate for evaluating signatures of
selection at particular nucleotides or classes of nucleotides (e.g., third codon posi-
tions, or first positions of miRNA target sites). PhyloP can measure acceleration
(faster evolution than expected under neutral drift) as well as conservation (slower
than expected evolution). In the phyloP plots, sites predicted to be conserved are
assigned positive scores (and shown in blue), while sites predicted to be fast-evolving
are assigned negative scores (and shown in red). The absolute values of the scores
represent -log p-values under a null hypothesis of neutral evolution. PhyloP treat
alignment gaps and unaligned nucleotides as missing data.

16

Display Convention and Configuration

In full and pack display modes, conservation scores are displayed as a wiggletrack
(histogram) in which the height reflects the size of the score. The conser-
vation wiggles can be configured in a variety of ways to highlight different
aspects of the displayed information. Click the Graph configuration help link
(http://genome.ucsc.edu/goldenPath/help/hgWiggleTrackHelp.html) for an
explanation of the configuration options.

Methods

The conservation tracks of this comparative assembly hub were created using
the phyloP package (https://github.com/glennhickey/hal/tree/development/
phyloP), which is part of HAL tools. The HAL’s phyloP is a python wrapper for
running the PHAST package phyloP program and building conservation tracks for
all genomes in the HAL multiple alignment. The process starts with creating a
neutral model using a reference genome and neutral regions provided. By default,
it expects the neutral regions to be coding genes and uses 4fold degenerate site
within those genes (which it extracts automatically). The neutral regions could also
be ancestral repeats (or anything else). After the model is created, the program
proceeds to compute the conservation scores for positions along the root genome.
These scores are subsequently lifted over to the children genomes using the multiple
alignment. Lastly, HAL phyloP computes the conservation scores for regions in the
children genomes that do not align to the root genome. (Of note, the program uses
the phylogenetic tree extracted from the HAL file if the tree is not specified.)

Credits

We thank Melissa Jane Hubisz and Adam Siepel for the PHAST package and
their help with HAL phyloP.
The HAL phyloP package: Glenn Hickey, Joel Armstrong, Ngan Nguyen, Benedict
Paten.

References

Siepel, A., Pollard, K. and Haussler, D.. New methods for detecting lineage-
specific selection. ResearchinComputationalMolecularBiology. 2006:190-205.

Hickey etal.. HAL: a hierarchical format for storing and analyzing multiple
genome alignments. Bioinformatics. 2013 May;29(10):1341-1342.

17

7.4 Alignments and Lifted-Over Annotations

The documentation for the Alignment snake tracks, lifted-over annotation tracks and all
other tracks in the hubCentral is located at outdir/documentation/hubCentral.html. To
edit the documentation, please edit the hubCentral.html file.

Alignments

Description

An alignment track, or snake track, shows the relationship between the cho-
sen browser genome, termed the reference (genome), and another genome, termed
the query (genome). The snake display is capable of showing all possible types of
structural rearrangement.

Display Convention and Configuration

In full display mode, a snake track can be decomposed into two primitive
drawing elements, segments, which are the colored rectangles, and adjacencies,
which are the lines connecting the segments. Segments represent subsequences of
the target genome aligned to the given portion of the reference genome. Adjacencies
represent the covalent bonds between the aligned subsequences of the target genome.
Segments can be configured to be colored by chromosome, strand or left a single
color under the SelecttrackType, Alignments, then Blockcoloringmethod.

Red tick-marks within segments represent substitutions with respect to the
reference, shown in windows of the reference of (by default) up to 50 kilo-
bases. This default can be adjusted under SelecttrackType, Alignments, then
Maximumwindowsizeinwhichtoshowmismatches. Zoomed in to the base-level
these substitutions are labeled with the non-reference base.

An insertion in the reference relative to the target creates a gap between
abutting segment sides that is connected by an adjacency. An insertion in the target
relative to the reference is represented by an orange tick mark that splits a segment
at the location the extra bases would be inserted. Simultaneous independent
insertions in both target and reference look like an insertion in the reference relative
to the target, except that the corresponding adjacency connecting the two segments
is colored orange. More complex structural rearrangements create adjacencies that
connect the sides of non-abutting segments in a natural fashion.

Duplications within the target genome create extra segments that overlap
along the reference genome axis. Duplications within the reference imply self-
alignments, intervals of the reference genome that align to other intervals of the

18

reference genome. To show these self-alignments within the reference genome we
draw colored coded sets of lines along the reference genome axis that indicate these
self homologies, and align any target segments that align to these regions arbitrarily
to just one copy of the reference self alignment.

The pack display option can be used to display a larger number of Snake
tracks in limited vertical browser. This mode eliminates the adjacencies from the
display and forces the segments onto as few rows as possible, given the constraint
of still showing duplications in the target sequence.

The dense display further eliminates these duplications so that each Snake
track is compactly represented along just one row.

To ensure that the snake alignments track loads quickly at any resolution,
from windows showing individual bases up to entire scaffolds or chromosomes, the
LOD (Levels-Of-Detail) algorithm (part of the HAL tools package) is used, which
creates scaleable levels of detail for the alignments. The additional use of the hdf5
caching scheme further aides scaling.

Various mouse overs are implemented and clicking on segments navigates to
the corresponding region in the target genome, making it simple to instantly switch
the alignment view between reference points.

Methods

A snake is a way of viewing a set of pairwise gap-less alignments that may
overlap on both the reference and query genomes. Alignments are always repre-
sented as being on the positive strand of the reference species, but can be on either
strand on the query sequence.

A snake plot puts all the query segments within a reference chromosome
range on a set of one or more levels. All the segments on a level are on the same
strand, do not overlap in reference coordinate space, and are in the same order and
orientation in both sequences. This is the same requirement as the alignments in a
chain on the UCSC browser. Before the algorithm is started, all the segments are
sorted by their starting coordinate on the query, and the current level is set to one.
Then in a recursive fashion, the algorithm places the first segment on the current
list on the current level, and then adds all the rest of the segments on the list
that will fit onto the current level with the requirements that all the segments on
a level are on the same strand, and that the proposed segment be non-overlapping
and have a reference start address that is greater than the query end address of
the previously added segment on that level. All segments that will not fit on the
current level are then added to subsequent levels following the same rules. Once all
the segments have been assigned a level, lines are drawn between the segments to

19

show the adjacencies in the list when sorted by query start address.

Credits

The snake alignment display was implemented by Brian Raney.
HAL supports and track generations: Glenn Hickey, Ngan Nguyen, Joel Armstrong,
Benedict Paten.

Lifted-over Annotations

Description

Lifted-over annotation tracks show the annotations of any genome translated
onto the reference genome, via a process of lift-over. All the alignments and lifted
over annotations shown are mutually consistent with one another, because the
annotation lift over and alignment display is symmetrically driven by one reference
free alignment process, rather than a mixture of different pairwise and reference
based multiple alignments.

Methods

The lifted-over tracks were generated using the halLiftover and/or the
halWiggleLiftover scripts of the HAL tools package.

Credits

Glenn Hickey, Ngan Nguyen, Joel Armstrong, Benedict Paten.

References

Hickey etal.. HAL: a hierarchical format for storing and analyzing multiple
genome alignments. Bioinformatics. 2013 May;29(10):1341-1342.

Comparative Assembly Hubs: Web Accessible Browsers for Comparative Ge-
nomics

7.5 RepeatMasker

The documentation for the repeatMasker track of all genomes is located at
outdir/documentation/repeatMasker.html. To edit the documentation, please edit
the repeatMasker.html file.

20

Description

This track was created by using Arian Smit’s RepeatMasker program
(http://www.repeatmasker.org/), which screens DNA sequences for inter-
spersed repeats and low complexity DNA sequences. The program outputs a
detailed annotation of the repeats that are present in the query sequence (repre-
sented by this track), as well as a modified version of the query sequence in which all
the annotated repeats have been masked. RepeatMasker uses the Repbase Update
(http://www.girinst.org/repbase/update/index.html) library of repeats from
the Genetic Information Research Institute (GIRI). Repbase Update is described in
Jurka (2000) in the References section below.

Display Conventions and Configuration

In full display mode, this track displays up to ten different classes of repeats:

Short interspersed nuclear elements (SINE), which include ALUs
Long interspersed nuclear elements (LINE)
Long terminal repeat elements (LTR), which include retroposons
DNA repeat elements (DNA)
Simple repeats (micro-satellites)
Low complexity repeats
Satellite repeats
RNA repeats (including RNA, tRNA, rRNA, snRNA, scRNA, srpRNA)
Other repeats, which includes class RC (Rolling Circle)
Unknown

The level of color shading in the graphical display reflects the amount of
base mismatch, base deletion, and base insertion associated with a repeat element.
The higher the combined number of these, the lighter the shading.

Methods

Data are generated using the RepeatMasker. Repeats are soft-masked. Alignments
may extend through repeats, but are not permitted to initiate in them.

Credits

Thanks to Arian Smit, Robert Hubley and GIRI for providing the tools and
repeat libraries used to generate this track.

References

21

Smit AFA, Hubley R, Green P. RepeatMasker Open-3.0. http://www.

repeatmasker.org. 1996-2010.

Repbase Update is described in:

Jurka J. Repbase Update: a database and an electronic journal of repetitive
elements. TrendsGenet. 2000 Sep;16(9):418-420. PMID: 10973072

For a discussion of repeats in mammalian genomes, see:

Smit AF. Interspersed repeats and other mementos of transposable elements
in mammalian genomes. CurrOpinGenetDev. 1999 Dec;9(6):657-63. PMID:
10607616

Smit AF. The origin of interspersed repeats in the human genome.
CurrOpinGenetDev. 1996 Dec;6(6):743-8. PMID: 8994846

22

8 hal2assemblyHub Usage Summary

Usage: hal2assemblyHub.py <halFile> <outputDirectory> [options]
Options:
-h, –help show this help message and exit
–cpHalFileToOut If specified, copy the input halfile to the output

directory (instead of just make a softlink).
Default=False

HUB INFORMATION:
–hub=HUBLABEL a single-word name of the directory containing the

track hub files. Not displayed to hub users.
Default=myHub

–shortLabel=SHORTLABEL the short name for the track hub. Suggested maximum
length is 17 characters. Displayed as the hub name on
the Track Hubs page and the track group name on the
browser tracks page. Default=my hub

–longLabel=LONGLABEL a longer descriptive label for the track hub.
Suggested maximum length is 80 characters. Displayed
in the description field on the Track Hubs page.
Default=my hub

–email=EMAIL the contact to whom questions regarding the track hub
should be directed. Default=NoEmail

–genomes=GENOMES File specified list of genomes to make browser for. If
specified, only create browsers for these genomes in
the order provided by the list. Otherwise create
browsers for all genomes in the input hal file

–rename=RENAME File that maps halfile genomeNames to names displayed
on the browser. Format:
<halGenomeName>tab<genomeNameToDisplayOnBrowser>.
Default=none

–tree=TREEFILE Newick binary tree. The order of the tracks and the
default track layout will be based on this tree if
option “genomes” is not specified. If not specified,
try to extract the newick tree from the input halfile.

–url=URL Public url of the hub location
–twobitdir=TWOBITDIR Optional. Directory containing the 2bit files of each

genomes. Default: extract from the input hal file.

23

LEVEL OF DETAILS:
Level-of-detail (LOD) options
–lod If specified, create “level of detail” (lod) hal files

and will put the lod.txt at the bigUrl instead of the
original hal file. Default=False

–lodTxtFile=LODTXTFILE “hal Level of detail” lod text file. If specified,
will put this at the bigUrl instead of the hal file.
Default=none

–lodDir=LODDIR “hal Level of detail” lod dir. If specified, will put
this at the bigUrl instead of the hal file.
Default=none

–lodMaxBlock=LODMAXBLOCK Maximum number of blocks to display in a hal level of
detail. Default=none

–lodScale=LODSCALE Scaling factor between two successive levels of
detail. Default=none.

–lodMaxDNA=LODMAXDNA Maximum query length that will such that its hal level
of detail will contain nucleotide information.
Default=none.

–lodInMemory Load entire hal file into memory when generating
levels of detail instead of using hdf5 cache.
Default=False.

–lodNumProc=LODNUMPROC Number of levels of detail to generate concurrently in
parallel processes

–lodMinSeqFrac=LODMINSEQFRAC Minumum sequence length to sample as fraction of step
size for level of detail generation: ie sequences with
length ≤ floor(minSeqFrac ∗ step) are ignored. Use
default from halLodExtract if not set.

–lodChunk=LODCHUNK HDF5 chunk size for generated levels of detail.

24

BED-FORMATTED ANNOTATIONS:
All annotations in bed or bigbed formats.
–bedDirs=BEDDIRS comma separated list of directories containing bed

files of the input genomes. Each directory represents
a type of annotation. The annotations of each genome
will then be liftovered to all other genomes in the MSA.
Example: “genes,genomicIsland,tRNA”. Format of each directory:
bedDir/ then genome1/ then chr1.bed, chr2.bed... Default=none

–finalBigBedDirs=BBDIRS comma separated list of directories containing final
big bed files to be displayed. No liftover will be
done for these files. Each directory represents a type
of annotation. Example: “genes,genomicIsland,tRNA”.
Format of each directory: bbDir/ then queryGenome/
then targetGenome1.bb, targetGenome2.bb ... (so
annotation of queryGenome has been mapped to
targetGenomes and will be display on the targetGenome
browsers). Default=none

–bedDirs2=BEDDIRS2 Similar to –bedDirs, except these tracks will be kept
separately and out of the composite track. Default=none.

–finalBigBedDirs2=BBDIRS2 Similar to –finalBigBedDirs, except these tracks will
be kept separately and out of the composite track. Default=none.

–noBedLiftover If specified, will not lift over the bed annotations. Default=False.
–tabBed If specified, treat tab as the delimiter of all the bed files.

Default: any white space.
WIGGLE-FORMATTED ANNOTATIONS:
All annotations in wiggle or bigWig formats.
–wigDirs=WIGDIRS comma separated list of directories containing wig

files of the input genomes. Each directory represents
a type of annotation. The annotations of each genome
will then be liftovered to all other genomes in the
MSA. Example: “genes,genomicIsland,tRNA”. Format of
each directory: wigDir/ then genome1/ then chr1.wig,
chr2.wig... Default=none

–finalBigwigDirs=BWDIRS comma separated list of directories containing final
big wig files to be displayed. No liftover will be
done for these files. Each directory represents a type
of annotation. Example: “readCoverage,”. Format of
each directory: bwDir/ then queryGenome/ then
targetGenome1.bw, targetGenome2.bw ... (so annotation
of queryGenome has been mapped to targetGenomes and
will be display on the targetGenome browsers). Default=none.

–nowigLiftover If specified, will not lift over the wig annotations. Default=False

25

REPEATMASKER:
–rmskDir=RMSKDIR Directory containing repeatMasker’s output files for

each genome. Format: rmskDir/ then genome1/ then
genome.rmsk.SINE.bb, genome.rmsk.LINE.bb, ...
Default=none

GC PERCENT:
–gcContent If specified, make GC-content tracks. Default=False
ALIGNABILITY:
–alignability If specified, make Alignability tracks. Default=False
CONSERVATION TRACKS:
Necessary information for computing conservation tracks
–conservation=CONSERVATION

Bed file providing regions to calculate the conservation tracks.
–conservationDir=CONSERVATIONDIR

Optional. Directory contains conservation bigwigs if available.
These bigwigs will be used. If this is not
specified, the program will compute the conservation tracks.

–conservationGenomeName=CONSERVATIONGENOMENAME
Name of the genome of the bed file provided in the
“–conversation” option.

–conservationTree=CONSERVATIONTREE
Optional. Newick tree for the conservation track.

–conservationNumProc=CONSERVATIONNUMPROC
Optional. Number of processors to run conservation

CLADE EXCLUSIVE REGIONS:
Requirements of regions that are exclusive to subgroup of genomes.
–cladeExclusiveRegions If specified, will generate tracks of regions that are

exclusive to each branch (including leaf “branches”,
which will be genome-exclusive regions) on the tree.
Default=False

–maxOutgroupGenomes=MAXOUT
Maximum number of outgroup genomes that a region is
allowed to be in. Default=0

–minIngroupGenomes=MININ
Minimum number of ingroup genomes that a region must
appear in. Default=all ingroup genomes (branch node
and all its children).

26

References

[1] Hickey, G., Paten, B., Earl, D., Zerbino, D., Haussler, D.: Hal: a hierarchical format for
storing and analyzing multiple genome alignments. Bioinformatics (2013) btt128

[2] Raney, B.J., Dreszer, T.R., Barber, G.P., Clawson, H., Fujita, P.A., Wang, T., Nguyen,
N., Paten, B., Zweig, A.S., Karolchik, D., et al.: Track data hubs enable visualization
of user-defined genome-wide annotations on the ucsc genome browser. Bioinformatics
30(7) (2014) 1003–1005

27

