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Chapter 1

Introduction

Please refer to the main dissertation for chapters other than Chapter

5.
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Chapter 5

ASTRAL1

In the previous chapter, we described how a species tree can be esti-

mated from a set of gene trees using either a traditional two step pipeline,

or the statistical binning pipeline. Regardless of which pipeline is used, the

final step requires a technique that produces a species tree given a collection of

input (estimated) gene trees. Such a method is called a summary method, and

a desirable attribute of the summary method is to be statistically consistent

under the MSC model (see background Section). Many statistically consistent

methods have been developed through the years, and of these methods (e.g.,

MP-EST [3], which we used in the previous chapter) are now in widespread

use. However, existing methods are too computationally intensive for use with

1Parts of this chapter have appeared in the following papers:

1. Siavash Mirarab, Rezwana Reaz, Md. Shamsuzzoha Bayzid, Théo Zimmermann,
M Shel Swenson, and Tandy Warnow. ASTRAL: Genome-Scale Coalescent-Based
Species Tree. Bioinformatics, 30(17):i541–i548, 2014

2. S. Mirarab and T. Warnow. ASTRAL-II: coalescent-based species tree estimation
with many hundreds of taxa and thousands of genes. Bioinformatics, 31(12):i44–i52,
2015

In all three cases, SM and his supervisor, TM, designed the method, designed the studies,
and wrote the papers (with comments from others), and SM implemented the methods. SM,
MSB, and TZM ran experiments for (1) and SM ran all experiments for (2). MSS and RR
worked on earlier versions of ASTRAL algorithmic ideas, and contributed to writing.
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genome-scale analyses of large number of species or have poor accuracy under

some realistic conditions, as we will show.

Some of these challenges were faced by the thousands plant transcrip-

tomes (1KP) project [4]. The 1KP project has gathered sequences from across

the genomes of a large number of plant species (103 plants in the initial phase

and more than 1,100 in the ongoing second phase). The goal of the project

was to estimate the species tree using various methods, including those that

take gene tree incongruence due to incomplete lineage sorting into account.

As we will show, these attempts had limited success, mostly due to limitations

of existing summary methods.

In this chapter, we introduce a new summary method called ASTRAL

(Accurate Species Tree Reconstruction ALgorithm). ASTRAL uses dynamic

programming to solve a likely NP-hard optimization problem. ASTRAL can

solve the optimization problem exactly in exponential time (doable only for

up to 18 species), but more importantly, it can heuristically solve the problem

in polynomial time by constraining the search space through a set of allowed

bipartitions in the species tree (the constrained version of the problem is solved

exactly). As we will show, ASTRAL is statistically consistent, even when

run under the “constrained” mode. The constrained version can run on very

large datasets, and has outstanding accuracy – improving upon various leading

statistically consistent summary methods. ASTRAL is often more accurate

than concatenation using maximum likelihood, except when ILS levels are low

or there are too few gene trees.
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We introduce two versions of ASTRAL: ASTRAL-I and ASTRAL-II.

The second version is a direct improvement upon ASTRAL-I, with substantial

advantages: ASTRAL-II is faster, can analyze much larger datasets (up to

1000 species and 1000 genes), and has substantially better accuracy under

some conditions. ASTRAL-I’s running time is O(n2k|X|2), and ASTRAL-II’s

running time is O(nk|X|2), where n is the number of species, k is the number

of loci, and X is the set of allowed bipartitions for the search space. ASTRAL

is available in open source at https://github.com/smirarab/ASTRAL/.

In the rest of this chapter, we first motivate the development of a

new summary method using simulation studies and some observations from

the 1KP project. We then give the algorithmic details of ASTRAL-I and

ASTRAL-II in Section 5.2 and discuss theoretical properties of both versions

of ASTRAL. We then present a simulation study evaluating ASTRAL-I in

Section 5.3 and a completely different simulation evaluating ASTRAL-II in

Section 5.4. We then evaluate the use of ASTRAL on real biological data

(Section 5.5) and finish by discussing results and pointing to directions for

future research.

5.1 Motivation

Despite the availability of coalescent-based methods, many biological

datasets are too large for the available methods. For example, MP-EST, easily

scales to very large number of gene trees but cannot be used on datasets

with large number of species due to computational reasons and degradation of

4



accuracy (see [5], but we will show more results supporting this in our results

section). BUCKy-pop [6], a method that tries to take into account gene tree

uncertainty, is more computationally intensive and cannot run on datasets of

moderate size. However, BUCKy tends to have very good accuracy where

it can run, and can work with unrooted gene trees [7]. MP-EST has also

been shown to have good accuracy under some conditions, but requires rooted

gene trees [3]. A new distance-based method called NJst [8] can also handle

unrooted gene trees, but NJst is new and its accuracy has not been tested

extensively on various datasets.

We were motivated to develop a new summary method by difficulties

we were facing on a biological data analysis. The 1KP project [4] gathered

sequence data across 103 plant species, with plans to go to more than 1,100

species in the next phase 2. Our attempts to run MP-EST on this dataset had

limited success. The pilot dataset that included 103 species was analyzed to

extract 856 genes. We had difficulty in rooting many of these gene trees, since

the common ancestor is believed to have existed close to a billion years ago,

and our set of outgroups were missing from many of the genes. We built a

restricted set of 669 gene trees that could be putatively rooted using outgroups.

We attempted to analyze these 669 gene trees using MP-EST.

MP-EST took between 4 to 8 days to finish 5 random runs on each

bootstrap replicate of this dataset. The results produced, however, were not

2see http://www.onekp.com/samples/list.php for the list of species
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consistent among the 5 runs, and in some cases had log likelihoods scores that

were many times larger than log likelihoods obtained from other runs (e.g.,

-69150891 in one run and -19540149 in a second run). These differences in

log likelihood are not expected and show that the method is failing to search

the tree space well in at least some of the random runs (this might be related

to the fact that MP-EST uses only NNI moves). The species trees produced

using MP-EST had low support, sometimes for easy-to-recover uncontrover-

sial clades that we had recovered with 100% support using concatenation, and

even simple statistically inconsistent summary methods such as MRP [9]. The

shortcomings of MP-EST on the 1KP dataset could be the result of a com-

bination of factors: rooting is challenging on this dataset, all gene trees are

incomplete (are missing some species) and in some gene trees a large number

of species are absent, and finally, the number of species being analyzed here is

more than all the previous analyses that had tested or used MP-EST (typically

below 50 species).

Beyond these challenges, it is possible that optimization scores other

than pseudo-likelihood score optimized by MP-EST could simply correlate

better with species tree accuracy. For example, a recent paper showed that a

simple non-parametric quartet-based way of scoring species trees can predict

species tree topological accuracy better than the pseudo-likelihood parametric

score used by MP-EST [5]. Similarly, in a recent paper, we have shown that

a simple statistically inconsistent method called MRL [11] outperforms MP-

EST on large parts of the parameter space (see Fig. 5.1), suggesting that better

6
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Figure 5.1: Comparison of MP-EST and MRL on a simulated mam-
malian dataset. Species tree error is depicted for a simulated mammalian
dataset reported in [10]. Simulation procedures are further described in Sec-
tion 5.3.1.1. (a) We fix the level of ILS to medium and vary the number of
genes and the gene alignment length, which controls gene tree estimation error.
(b) We fix the level of ILS to very high, and vary the number of genes. We
compare accuracy of MRL and MP-EST. On many conditions MRL has better
accuracy; MP-EST, which has theoretical guarantees of statistical consistency,
is better than MRL on these data only when levels of ILS are very high and
very large number of genes are available.
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statistically consistent methods can be developed.

An accurate analysis of the 1KP dataset required a new method that

could handle unrooted gene trees, could handle large number of species, and

was robust to missing data. More generally, even the best coalescent-based

summary methods have not been reliably more accurate than concatenation [12,

13], and analyses of biological datasets have in some cases resulted in species

trees that were less well resolved and biologically feasible than concatena-

tion [14, 15]. Hence, the choice between coalescent-based estimation and con-

catenation is highly controversial [16]. Improved accuracy and scalability for

summary methods can help resolving this long-standing debate about the rel-

ative accuracy of concatenation and summary methods.

5.2 ASTRAL

Designing a statistically consistent summary method is complicated by

the possibility that the most likely gene tree can be different from the species

tree (the so-called anomaly zone [17]). However, it has been proved [18–20]

that

Theorem 5.2.1. There are no anomalous rooted 3-taxon species trees and no

anomalous unrooted 4-taxon species trees.

The complete proofs are given in [18] for rooted trees and [19, 20] for

unrooted trees. Here, we provide a sketch for the rooted species tree on 3-

taxa. Let’s consider the case of the 3-taxon tree on human, chimp, and gorilla,

8



Gorilla Chimp Human Gorilla Chimp Human

Gorilla Chimp HumanGorilla Chimp Human

(1) (2)

(3) (4)

Figure 5.2: Rooted gene trees and the species tree for 3 taxa. Four
coalescence scenarios can be imagine. (1) The two lineages from sister species
chimp and human coalesce in their first ancestral population. The gene tree
and the species tree will always be congruent under this scenario. (2-4) Lin-
eages from chimp and human do not coalesce in the ancestral population and
go further back into the common ancestor of all three populations. All three
scenarios are equiprobable. Blue (1-2): concordance between species tree and
gene tree. Red (3-4): discordance.

shown in Figure 5.2. There are three possible gene tree topologies (putting

human with chimp or with gorilla, or putting chimp and gorilla together). The

lineages from human and chimp have a non-zero probability p of coalescing

in their most recent common ancestor (scenario 1); gene trees produced by

this scenario will agree with the specie tree. If the two lineage fail to coalesce

and go further back in time to the previous population, we have three lineages

(human, chimp, gorilla) and the first coalescence event is equally likely to

9



be between any pair of lineages (scenarios 2 – 4); thus, the three gene tree

topologies are equiprobable in this case, and each topology has a probability

of 1−p
3

. The probability of observing the species tree topology among the gene

trees, therefore, is p+ 1−p
3

= 1
3

+ 2p
3

, which is strictly greater than 1
3
. Thus, the

species tree topology has a higher probability than the two alternative trees.

A similar argument can be made for 4-taxon unrooted species trees [18].

The fact that rooted 3-taxon and unrooted 4-taxon species trees do not

have anomaly zones underlies the design of some summary methods and their

proofs of statistical consistency. These methods decompose the gene trees into

triplets or quartets of taxa (for the rooted or the unrooted case, respectively),

find the species tree on the triplets or quartets, and then combine the triplet

or quartet species trees. ASTRAL uses similar ideas in its design.

While some methods in the literature, such as MP-EST, use rooted

triplets of taxa to speed up these analyses, we use unrooted quartet trees in

ASTRAL. Rooting gene trees can be challenging, as it typically requires the

use of an outgroup, but the given limited data in each gene, the position of

the outgroup can be easily misconstructed [16]. For this reason, we believe

that by using unrooted input gene trees, ASTRAL finds applicability for more

datasets. As we will show, good running time can be achieved even with

quartet trees, and ASTRAL has excellent accuracy.

We first start by giving some definitions and describing the notation.

We next describe the first version of ASTRAL, and then describe how ASTRAL-

II has improved upon ASTRAL-I.

10



5.2.1 Definitions and notations

We use the following notation throughout the rest of this chapter:

S: a set of n species

G = {t1, . . . , tk}: a set of k binary unrooted gene trees leaf-labelled by S.

r: an arbitrary set of four species {a, b, c, d} ⊂ S.

Q : the set of all
(
n
4

)
quartets of taxa selected from S

q: an unrooted tree topology on quartet r. We use ab|cd to indicate that a

and b are sisters. Three topologies are possible: ab|cd, ac|bd, and ad|bc.

t|r: the quartet tree topology obtained by restricting tree t to the four species

of r. When q = t|r, we say that t agrees or is compatible with q.

Q(t): the set of quartet trees induced by tree t; thus, Q(t) =
⋃

r∈Q{t|r}

wG(q): the number of trees in G that agree with q.

X: a set of bipartitions (see background Section ??) on leaf-set S; all bipar-

titions in X are complete (include all taxa in S). Each subset of S is

called a cluster, and a bipartition defines two clusters. Since bipartitions

in X are complete, we can represent X as a set of clusters instead of

bipartitions, and when we do so, we refer to it as X′.

For any quartet of taxa, the quartet tree topology that has higher wG

than the two alternative topologies is called the dominant topology (breaking

ties arbitrarily).

11



5.2.2 ASTRAL-I

5.2.2.1 Optimization problem

Given a set G of k binary input gene trees on n taxa, there is a multi-set

of k
(
n
4

)
quartet trees induced by trees in G. We define the Weighted Quartet

(WQ) score of a tree t with respect to G to be the number of quartet trees

from this multi-set that t also induces. Thus,

WQG(t) =
k∑
1

|Q(t)
⋂

Q(ti)| (5.1)

An equivalent definition is

WQG(t) =
∑
r∈Q

wG(t|r) =
∑

q∈Q(t)

wG(q)

.

We now define an optimization problem for maximizing WQ.

Weighted Quartet Consensus (WQC) problem:

• Input: a set G of unrooted gene trees

• Output: the tree topology T̂ on S that maximizes WQG; i.e., return T̂

such that WQG(T̂ ) ≥ WQG(T ′) for T ′ 6= T̂ .

The WQC optimization problem, also called the quartet consensus [21]

or Maximum Quartet Support Species Tree (MQSST) [1] problem, is a specific

case of the general weighted quartet problem (where w(q) is defined arbitrarily

and not with respect to G), which is an NP-hard [22] problem. The complexity

of WQC has not been established. If the input trees are allowed to have missing

12



data, then they could all include four leaves; in this case, WQC would be NP-

hard [22]. When all the gene trees are restricted to be complete (i.e., contain

all the species), the complexity of WQC is an open problem to our knowledge,

but we suspect it is also NP-hard.

To be able to cope with the computational complexity of this likely

NP-hard problem, we introduce a constrained version of WQC.

Constrained Weighted Quartet Consensus (CWQC) problem:

• Input: a set G of unrooted gene trees, and a set X of bipartitions on S.

• Output: the tree topology T̂ on species set S that maximizes WQG and

all its bipartitions are in X (equivalently, all its clusters are in X′).

CWQC is a generalization of WQC; setting X′ in CWQC to the power

set (set of all possible subsets) of S would solve WQC. As we show in The-

orem 5.2.8, CWQC can be solved in time polynomial in the size of X′, k,

and n, and ASTRAL uses a dynamic programing algorithm to solve the prob-

lem. An exact solution to the constrained problem gives a heuristic solution

to the unconstrained problem. Therefore, we refer to a solution to the con-

strained problem as the heuristic version of ASTRAL, and a solution to the

unconstrained version as the exact version. Various settings of X would give

different heuristics, and would each correspond to a specific constraint on the

search space.

A natural way to define X is using the input gene trees and adding all

their bipartitions to the set. The motivation for setting X in this manner is
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that we hope each bipartition in the species tree would appear in at least one

of the gene trees. This definition of X is used by default in ASTRAL-I, but we

allow the user to add extra bipartitions to this set if desired (in, ASTRAL-II,

we expand this set automatically). Besides the intuitive reasons for setting X

to bipartitions in the gene trees, this definition enables us to prove theoretical

guarantees of statistical consistency.

Theorem 5.2.2. An exact solution to CWQC problem is a statistically con-

sistent estimator of the species tree topology under the MSC model when true

gene trees are used as input, as long as X includes at least all bipartitions from

all the input gene trees, but perhaps also more bipartitions.

Proof. Let T be the true species tree. As stated in Theorem 5.2.1, unrooted

quartet trees do not have anomaly zones [20]. Therefore, as the number of

gene trees increases, with probability that approaches 1, each quartet topology

induced by the species tree will appear more frequently in G than either of the

two alternative topologies. Therefore, for every quartet of taxa r and every

possible tree T ′, with probability that approaches 1 as we increase the number

of genes, wG(T |r) ≥ wG(T ′|r). By extension, if Q is the set of all possible

quartets of taxa, then

∑
r∈Q

wG(T |r) ≥
∑
r∈Q

wG(T ′|r)

and thus:

WQG(T ) ≥ WQG(T ′)
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Thus, the optimization criterion in WQC attains its maximum value with the

true species tree with probability that approaches 1. The assumption of having

a binary species tree ensures that the dominant quartet tree has a frequency

that is strictly higher than two alternatives, and therefore, in the limit, the

optimization problem has a unique maximum value (note that Q(T1) = Q(T2)

iff T1 = T2 [23]). Thus, an exact solution to the WQC problem is statistically

consistent.

The species tree topology has a non-zero probability of being observed

among gene trees. Therefore, as the number of gene trees increases, with

probability converging to 1, at least one of the gene trees will be topologically

identical to the species tree T . Therefore, in the limit, the set X will contain

all the bipartitions from T with probability approaching 1. Thus, a solution

to CWQC is also statistically consistent as long as X includes all bipartitions

from all gene trees. Note also that X may contain all the bipartitions from T

even without having T among its gene trees, but we invoked the probability

of observing T in X for ease of proof.

We note that CWQC takes into account the relative frequency of all

three alternative quartet topologies for all quartets of taxa, and weights them

accordingly. Thus, if the dominant quartet topology is much more frequent

than the alternatives, trees that don’t induce the dominant topology are pe-

nalized, but if the three alternative quartet topologies all have frequencies

close to 1/3, that quartet will contribute little to the optimization problem.

This approach is in contrast to some other quartet-based methods such as the
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population tree from BUCKy [6] that first try to find the dominant quartet

topologies and then summarize them. Estimation of the dominant quartet tree

is susceptible to error (due to insufficient gene sampling and estimation error)

and the CWQC accounts for this.

The WQC optimization problem could be expressed as finding a median

tree, where instead of finding a species tree that maximizes the total number

of quartet trees that it satisfies, we would seek a fully binary species tree that

has a minimum total distance to the input gene trees, where the distance is

the number of gene tree quartet trees that it violates. Then, Theorem 5.2.2

asserts that the median tree (under this definition) is a statistically consistent

estimator of the species tree.

5.2.2.2 Dynamic programming

ASTRAL uses a dynamic programming (DP) approach to solve the

CWQC optimization problem. Moreover, the fact that weights of quartet trees

are defined according to their frequency in the gene trees and not arbitrarily

enables us to optimize the WQ score without explicitly enumerating the set

of all possible quartet trees. Thus, we solve CWQC problem without ever

explicitly calculating the 3
(
n
4

)
values of the wG function.

For a given unrooted binary tree t and four leaves r = {a, b, c, d} in

the tree, the induced subtree of t connecting the four leaves will have exactly

two nodes x and y with degree three (Fig. 5.3). We say that the quartet tree

q = ab|cd on four taxa r is associated (or mapped) to a pair of nodes {x, y}
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Figure 5.3: Mapping a quartet tree to a tripartition. Each node x in
an unrooted tree defines a tripartition (X1|X2|X3) of the set of taxa and a
tripartition defines a node. Each induced quartet tree q = ab|cd maps to two
nodes (x and y here). Node x is where the paths from a to c (or d) and b to
c (or d) first join. Similarly, node y is where the paths from c to a and d to a
first join.

in an unrooted binary tree t when q is compatible with t and x and y are the

only two nodes that have a degree of three in t|r. We say that q is mapped

to x from its ab side when a and b are on two different edges pending from x

(similarly y is associated with the cd side of q).

Deleting x from a tree t separates it into three parts, X1, X2, and X3, as

shown in Figure 5.3; this is called a “tripartition”, and is denoted (X1|X2|X3).

Internal nodes of an unrooted tree and tripartitions are equivalent and we

use them interchangeably. We call each part of a tripartition a “side” of the

corresponding node.

For an internal node x, we can easily count the number of quartets

that are associated with it. Recall that by definition, a quartet mapped to x
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has two of its leaves pending from two different edges of x. Thus, to count

the number of quartets mapped to x, we simply need to pick one of the three

partitions of x (say X1), and pick two leaves from it, and then pick one leaf

from each of the remaining partitions, and do this for all ways of picking the

first partition. Thus,

Corollary 5.2.3. The number of quartet trees mapped to x = (X1|X2|X3), is

F (x1, x2, x3) =

(
x1
2

)
x2x3+x1

(
x2
2

)
x3+x1x2

(
x3
2

)
=
x1x2x3(x1 + x2 + x3 − 3)

2

where x1, x2, and x3 give the sizes of X1, X2, and X3, respectively.

Recall that q = ab|cd is mapped to x from the ab side when a and b

belong to two different sides of x. Now, for two given tripartitions, x and y,

we can derive how many quartets are mapped to both x and y from the same

side of the quartet.

Lemma 5.2.4. Let x = (X1|X2|X3) and y = (Y1|Y2|Y3) be two tripartitions

on the same set of leaves S. Let C be a 3× 3 matrix with Cij = |Xi ∩ Yj| for

i, j ∈ {1, 2, 3}. The number of quartet trees mapped to both x and y from the

same side of the quartet tree is:

H(x, y) = H(C) =
∑

(a,b,c)∈G3

F (C1a,C2b,C3c) (5.2)

where G3 gives the set of all permutations of {1, 2, 3}.

Proof. There are six bijections between the three parts of x and y. Take

w.l.o.g. one of those bijections (X1 → Y1, X2 → Y2, X3 → Y3). If we find
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the intersection between all three partitions paired with each other, we get a

tripartition z = (X1 ∩ Y1, X2 ∩ Y2, X3 ∩ Y3) on a subset of S. We can use the

equation from Corollary 5.2.3 to count the number of quartet trees mapped

to z. This is the term inside the sum in Equation 5.2 and note that we are

summing over all possible bijections. The quartet trees mapped to z are clearly

mapped also to both x and y. Moreover, any quartet tree mapped to z maps

to x and y on its same exact side (the side that belonged to two sides of z).

Furthermore, a quartet tree that maps to both x and y but from different

sides won’t be counted because z will not include it. To see this, consider

x = (a|b|cd) and y = (ab|c|d); the quartet tree ab|cd is mapped to both x and

y, but is mapped from the ab side to x and from the cd side to y. All six

ways of calculating z using bijections between partitions of x and y will have

at least one empty part, and thus, H will be zero here. Therefore, H counts

only quartets that are mapped to both x and y form their same side. We now

need to show that all such quartet trees are counted exactly once.

Take any quartet tree q = ab|cd that is mapped to both x and y w.l.o.g.

from the ab side. By definition, a and b belong to two sides of x and w.l.o.g.

let a ∈ X1, b ∈ X2, and c, d ∈ X3 and similarly, w.l.o.g. let a ∈ Y1, b ∈ Y2, and

c, d ∈ Y3. The bijection that produces z = (Z1 = X1 ∩ Y1, Z2 = X2 ∩ Y2, Z3 =

X3 ∩Y3) has a ∈ Z1, b ∈ Z2, and cd ∈ Z3; therefore F applied to this bijection

will count q. Tripartitions z produced by all five remaining bijections will miss

one of the four taxa, and therefore will not count q. The lemma follows.

We now count the number of quartet trees that a tripartition x shares
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with a collection of input trees. Let

sG(x) =
∑
t∈G

|Q(t) ∩Q(x)|

where Q(x) is the set of quartet trees mapped to x. Then,

Lemma 5.2.5. For a tripartition x and a set of unrooted binary trees G,

sG(x) =
∑
t∈G

∑
y∈N(t)

H(x, y) (5.3)

where N(t) is the set of internal nodes in t and H(x, y) is given in Equation 5.2.

Proof. The proof follows from the fact that by Lemma 5.2.4, each H(x, y)

term counts all quartet trees that are mapped to x and y if and only if they

are mapped from the same side. Each quartet tree q in a gene tree t that is

mapped to x will therefore be counted, and will be counted only once: when

y is the node in the gene tree that has q mapped to it, and has q mapped to

it from the same side as x.

We now present a major result.

Theorem 5.2.6. The WQG score of a species tree T̂ can be computed as

WQG(T̂ ) =
1

2

∑
x∈N(T̂ )

sG(x) (5.4)

Proof. Recall that WQG score defined in Equation 5.1 counts the number of

quartet trees induced both by the species tree and the set of gene trees. Each

quartet tree in the species tree maps to two of its internal nodes. Thus, if we
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simply count the number of quartet trees in all gene trees that are mapped to

any internal nodes of T̂ and sum up these values, we will count each quartet

tree shared between the species tree and the gene trees exactly twice. The

sG(x) term, by Lemma 5.2.5, counts exactly this quantity for a given node.

Thus, we just need to sum sG(x) values for all the internal nodes of T̂ , and

divide the sum by two. The theorem follows.

The ability to score a tripartition of the species tree in isolation from

other tripartitions using the sG(x) function allows us to use dynamic program-

ming to maximize the WQG score. The dynamic programming starts from

the set S and recursively divides it into smaller subsets, each time finding the

division that maximizes the WQG score. Backtracking defines the subtree that

maximizes the score and at the top level returns the tree that maximizes WQG.

Recall that X′ is the set of clusters from bipartitions in X (i.e., A ∈ X′

iff the bipartition (A|S − A) ∈ X). We compute V (A), which gives the score

for an optimal subtree on A ⊂ S, using the following dynamic programming.

ASTRAL DP algorithm:

• |A| = 1: V (A) = 0

• A = S: V (A) = V (A− {a}) for an arbitrary a ∈ S

• otherwise:

V (A) = max
A′,A−A′∈X′

{V (A′) + V (A−A′) +
1

2
sG((A′|A−A′|S−A))} (5.5)

Note that sG is defined in Equation 5.3 and (A′|A−A′|S−A) defines a tripar-
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tition, which can be scored using sG.

The recursion in the dynamic programming finds a way of dividing each

set A into A′ and A−A′ (each of which must be in X′) such that the number

of quartets satisfied by an optimal rooted tree on A′ and A − A′, in addition

to those satisfied by the tripartition (A′|A − A′|S − A), is maximized. The

boundary cases are singleton clusters; for these, we set V (A) = 0. Also note

that for A = S, the tripartition (A′|A − A′|S − A) will have an empty set in

its third part, regardless of the choice of A′; therefore sG(A′|A−A′|S−A) will

be zero for A = S. Since any trivial bipartitions (where one side has only one

taxon) has to be in the final species tree, setting A′ to any arbitrarily chosen

leaf at the top level would work. Each division of A to two parts creates two

new bipartitions in the species tree: (A′|S − A′) and (A − A′|S − (A − A′));

note that both of these bipartitions are restricted to those found in the set X.

Theorem 5.2.7. The ASTRAL DP algorithm finds an optimal solution to the

CWQC optimization problem.

Proof. Let tree T̂ be the tree obtained by backtracking the sequence of set

divisions in the DP algorithm. The V (S) score computed by the DP algo-

rithm equals the right hand side of Equation 5.4 and by Theorem 5.2.6, it

equals WQG(T̂ ) (i.e. the optimization score of the tree). To see this, note that

the recursive formula simply produces the sum of sG scores for all the inter-

nal nodes of T̂ . We therefore need to only show the dynamic programming

maximizes V (S). For each A, the dynamic programming recursively finds the
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maximum possible V among all resolutions of A in addition to the score for

the node resulting from that resolution; thus, by induction on A, the dynamic

programming maximizes V . The theorem follows.

5.2.2.3 Running time analysis

The score sG(x) needs to be calculated for each tripartition of taxa vis-

ited in the dynamic programming. In ASTRAL-I, to compute sG(x), we simply

follow Equation 5.4. Thus, we sum over O(nk) input gene tree nodes, and, for

each node, we first calculate C and then compute H(C) using Equation 5.2.

We represent subsets of taxa as bitsets, which results in O(n) running time for

calculating C; therefore, calculating each sG(x) requires O(n2k) (we improve

this in ASTRAL-II, as we will show). Note that our dynamic programming

algorithm draws its clusters from the set X′. Not all pairs of clusters in X can

be put together, but for simplicity we assume they can; with this assumption,

there are O(|X|2) tripartitions that need to be scored. Thus,

Theorem 5.2.8. ASTRAL-I runs in O(n2|X|2k) time, where n is the number

of species and k is the number of gene trees.

Note that this is a conservative running time analysis. The number

of tripartitions scored is certainly lower than |X|2, and likely can be bounded

with a lower exponent. Also, we do not need to calculate the score multiple

times for the tripartitions that appear in multiple gene trees; we can compute

the score once and simply multiply it by the number of times it appears. In

practice, ASTRAL-I is really fast, as we will show.
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We close by noting that our dynamic programming (DP) approach is

similar to the algorithm used in [24] for constructing species trees from sets

of gene trees, minimizing the total number of duplications and losses, and

subsequently used to construct species trees minimizing deep coalescence [25].

We also note that Bryant and Steel give a dynamic programming for solving

the general constrained weighted quartet problem (where weights are defined

arbitrarily and not by the gene trees) [26]. Their dynamic programming also

runs in polynomial time (with a n4 term) and solves a constrained version

of the problem where the bipartitions in the final tree are restricted to those

coming from an input constraint set (analogous to X). In our algorithm, we

assume weights are the frequencies in the gene trees, and therefore, we can

solve the problem without ever listing all 3
(
n
4

)
quartet topologies and their

weights. Thus, we are able to achieve polynomial time running time with a

lower exponent than n4.

5.2.3 ASTRAL-II

We now describe how ASTRAL-II improves upon the older version.

ASTRAL-II has three new features:

1. ASTRAL-II uses a faster algorithm to compute sG(x).

2. ASTRAL-II searches a larger space by expanding the set X using heuris-

tics.

3. ASTRAL-II can handle polytomies in its input gene trees.
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Algorithm 5.1 - Weight calculation. Input is a gene tree set G and a
tripartition w = (X|Y |Z). Each part (e.g., X) is a bitset indexed by the
species (thus, X[i] is 1 if leaf i is in X and otherwise is 0). H(C) is defined as
in Eq. 5.2. Function WEIGHT computes sG(x) defined in Eq. 5.3.

function weight(g, w = (X|Y |Z))
for t ∈ G do

w ← 0
S ← empty stack
for u ∈ postOrder(t) do

if u is a leaf then
(x, y, z)← (X[u], Y [u], Z[u])

else
(C11,C12,C13)← pull from S
(C21,C22,C23)← pull from S
(x, y, z)← (C11 + C21,C12 + C22,C13 + C23)
(C31,C32,C33)← (|X| − x, |Y | − y, |Z| − z)
w ← w +H(C)

push (x, y, z) to S

We motivate and discuss each feature in turn.

5.2.3.1 Running time improvement

Recall that ASTRAL-I computes sG in O(n2k) time for each tripar-

tition, by going over all O(nk) input gene tree nodes, and, for each node,

calculating H using Equation 5.2 in O(n). In ASTRAL-II, instead of looking

at all tripartitions in input gene trees, we use a post-order traverse of all gene

trees (rooted arbitrarily) to calculate the score using Algorithm 5.1.

To score the input tripartition w = (X|Y |Z), we traverse all the nodes

of all gene trees. For each traversal node u, we compute a tuple (x, y, z),

which gives the number of leaves under u that are shared with X, Y , and Z.
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To do this for leaves, we simply need to find which side of w includes that leaf,

which can be done in O(1) if the tripartition is represented as three bitsets.

For internal nodes, we can calculate (x, y, z) by simply summing up the same

quantities already calculated for the two children of u, which also takes O(1).

The tuples from the two children of u in addition to (|X| − x, |Y | − y, |Z| − z)

give all the element of the 3×3 matrix C that gives the size of the intersection

between all three sides of u and all three sides of w. Given C, we simply need

to calculate H(C), which also takes O(1). Thus, each inner-loop takes O(1)

and therefore, calculating sG(w) for one tripartition requires O(nk) running

time. Thus,

Theorem 5.2.9. ASTRAL-II runs in O(nk|X|2) time, where n is the number

of species, and k is the number of gene trees.

5.2.3.2 Additions to X

Theorem 5.2.2 established that the default way of setting the set X is

statistically consistent. However, for a limited number of genes, as we will

show in our results section, it is possible and sometimes likely that some of

the bipartitions in the species tree do not appear in any of the gene trees. In

ASTRAL-II, to account for this, we use a host of heuristic strategies to add

extra bipartitions to the default set X.

Similarity Matrix: For each pair of species a and b, we define

Q({a, b}) = {(ab|cd) : c, d ∈ S− {a, b}}
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We now define a similarly measure between a pair of species:

s(a, b) =
∑
t∈G

|Q({a, b}) ∩Q(t)|

Thus, the similarity between the two taxa is the number of quartet trees

induced by gene trees where the pair appear on the same side of the quartet.

This similarity matrix can be calculated using Algorithm 5.2. This algorithm

traverses all nodes of all input gene trees (rooted arbitrarily), and for each

node u, we look at all pairs of leaves chosen each from one of the children

of u. For each such pair, we add
(
o
2

)
to their similarity score, where o is the

number of leaves outside the subtree below u. This will process each pair of

nodes in each of the input k genes exactly once and would therefore require

O(n2k) computations. The final score can be normalized by |Q({a, b})|, the

total number of quartet trees that include a and b on the same side. When

input gene trees are complete, this normalization is not necessary and is not

shown in Algorithm 5.2.

Once the similarity matrix is computed, we calculate an UPGMA tree

and add all its bipartitions to the set X. The UPGMA algorithm starts from

Algorithm 5.2 - Computing similarity matrix. leafCount gives the
number of leaves under a node and is easily precomputed.

function getSimilarity(G)
S ← Zeros(n× n)
for g ∈ G and u ∈ postOrder(g) do

for l ∈ Left(u) do
for r ∈ Right(u) do

S[l, r] = s[r, l] = s[r, l] +
(
n−leafCount(u)

2

)
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Algorithm 5.3 Additions to X using greedy consensus. See descrip-
tions of functions in Table 5.1. Constants are by default set to THS =
{0, 1

100
, 1
50
, 1
20
, 1
10
, 1
4
, 1
3
}; ITERS = 10; RWD = 2; and FRQ = LTH = 1

100
.

function addByGreedy(G, S)
for t ∈ THS do

gc← greedy(G, t, False)
for p ∈ polytomies(gc) do

updateX(upgma(S, start = clusters(p)))
c← 0
itercount← ITERS
while c < itercount do

c← c+ 1
sample← randSample(p)
gr ← greedy(G|sample, 0, T rue)
if updateX(resolve(p, gr)) ≥ FRQ then

itercount← itercount+RWD

updateX(resolve(p, upgma(S|sample)))
if t ≤ LTH and c < ITERS then

for s ∈ sample do
ld← pectinate(sortBy(S, sample, s)
updateX(resolve(p, ld))

n singleton clusters, one per taxa, and in each step, combines the two clus-

ters with the highest similarity. The similarity of two clusters is the average

similarity between all pairs of leaves chosen each from one of the two clusters.

Greedy: The greedy consensus of a set of trees is obtained by starting from

a star tree and adding bipartitions from input trees in the decreasing order of

their frequency if they don’t conflict with previous bipartitions. This process

ends when no remaining bipartition has frequency above a given threshold,

or when the tree is fully resolved. We use greedy consensus of gene trees to
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Table 5.1: Functions used in Algorithm 5.3.

Function Description

polytomies(t) For a given unrooted tree t, return all nodes with degree d > 3.
greedy(G, t, b) Finds bipartitions in all input trees in G and for each biparti-

tions notes its frequency. Sorts bipartitions by the descending
order of frequency (with arbitrary tiebreakers) and discards
those with frequency below t. Starts with a fully unresolved
tree (i.e., the star tree), and adds bipartitions one at a time
according to the order; if a bipartition conflicts with the tree,
ignores it. At the end, if b is true, any remaining polytomies
in the tree are randomly resolved. The branches (i.e., bipar-
titions) in the resulting tree are labelled by their bipartition
frequency (i.e., their frequency in trees in G).

updateX(t) Adds all bipartition from t to the set X and notes which bipar-
titions are new. When edges in t have a frequency label (e.g.,
labels generated by the greedy function), updateX returns
the maximum label of any new bipartition added to X.

clusters(p) An unrooted node p with degree d divides taxa into d subsets
(Fig. 5.4). This function returns the partitions defined by p.

upgma(S,C) Runs UPGMA using similarity matrix S on n taxa. By de-
fault, starts from n singleton clusters, one per taxa, and in
each step, combines the two clusters with highest similarity.
The similarity of two clusters is the average similarity between
all pairs of leaves chosen each from one of the two clusters.
When a set of clusters C is given, instead of starting with n
singletons, starts by C.

randSample(p) Selects a random leaf from each partition around node p.
resolve(p, t) The input p is a node in an unrooted tree with leaf set L,

and t is an unrooted tree on L′ ⊂ L such that L′ contains
exactly one leaf from each partition defined by p. Note that
the tree t will be compatible with the tree that includes p.
Every bipartition in t defines a further resolution of p. This
function resolves p according to t and returns the results.

pectinate(O) Given an ordered list of taxa O, it returns a pectinate tree
based on O; e.g., pectinate(a, d, e, c, b) = (a, (d, (e, (c, b)))).

sortBy(S, l, x) Sorts a list of taxa l based on their decreasing similarity to x
and according to the similarity matrix S.
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compute and add further bipartitions to X, using Algorithm 5.3.

Algorithm 5.3 estimates the greedy consensus of the gene trees with

various thresholds (THS). For each polytomy in each of these greedy con-

sensus trees, it resolves the polytomy in multiple ways and adds bipartitions

implied by those resolutions to the set X (if they don’t already exist).

1. We resolve the polytomy by applying UPGMA to the similarity matrix;

however, unlike the normal UPGMA algorithm that starts from singleton

clusters, here, we start from clusters defined by each side of the polytomy.

2. We sample one leaf from each side of the polytomy randomly, and use the

greedy consensus of the gene trees restricted to this subsample to find a

resolution of the polytomy (randomly resolving remaining polytomies).

We repeat this process at least 10 times, but if the subsampled greedy

consensus trees include new bipartitions that are sufficiently frequent

(≥ 1%), we do more rounds of random sampling (we increase the number

of iterations by two).

3. For each random subsample around a polytomy, we also resolve it by

calculating an UPGMA tree on the similarity matrix restricted to the

set of subsampled species.

4. For the two first greedy threshold values in THS and only for the first

10 random subsamples, we also use a third strategy that can potentially

add a larger number of bipartitions: for each subsampled taxon a, we
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resolve the polytomy as a pectinate tree (see Table 5.1) by sorting the

remaining taxa according to their similarity with a (in decreasing order).

Gene tree polytomies: When gene trees include polytomies, we also add

new bipartitions to X. We first compute the greedy consensus of the input gene

trees with threshold 0, and if the greedy consensus has polytomies, we resolve

them using UPGMA; we repeat this process twice to account for random

tie-breakers in the greedy consensus estimation. Then, for each gene tree

polytomy, we use the two resolved greedy consensus trees to infer a resolution

of the polytomy, and we add the implied bipartitions to X.

Incomplete gene trees: The optimization problem used in ASTRAL can

easily handle incomplete gene trees; i.e., gene trees where some of the leaves

are not present. If m < n quartets are present in a gene, it would contribute(
m
4

)
quartets to the WQ score defined in Equation 5.1. It is easy to show that

if patterns of missing data are unbiased, the exact version of ASTRAL remains

statistically consistent under gene trees that are incomplete. The challenging

part of handling inputs with missing data is ensuring that the set X will include

usable bipartitions.

When an input gene tree has missing data, at least one of its two parts

(but possibly both parts) would not be in the complete gene tree, and therefore

the inclusion of that part in X′ is unlikely to be helpful (recall that X′ is the

set of all parts from all bipartitions in X). When dealing with incomplete
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gene trees, we need to complete their bipartitions before adding them to X. In

ASTRAL-II, we use a heuristic approach to complete incomplete gene trees,

and add bipartitions from the completed gene trees to X. Note that this does

not affect the scoring function, and only impacts the search space.

We use the similarity matrix computed in Algorithm 5.2 for adding

missing taxa into incomplete trees. To ensure that the similarity matrix is not

affected by arbitrary patterns of missing data in the gene trees, we need to

also normalize the similarity values. As noted before, the normalization factor

for each pair of leaves can simply be the number of quartets in all input gene

trees that include the two taxa:

m(a, b) =
k∑
1

(
ni − 2

2

)
Ii(a, b)

where ni is the number of leaves in gene tree gi and Ii(a, b) = 1 if {a, b} ⊂ gi

and otherwise Ii(a, b) = 0.

Given the similarity matrix, we add each missing taxon to each gene

tree using an application of the four point condition [27]. When a distance

matrix d is defined based on pairwise distances of leaves of a binary tree (i.e.,

with strictly positive branch lengths), for any quartet of taxa r, if the tree

induces the quartet topology q = ab|cd, we have:

d(a, b) + d(c, d) < d(a, d) + d(b, c) = d(a, c) + d(b, d)

This inequality is called the four point condition.

We assume our similarity matrix (which can be converted to a distance

matrix) uniquely defines a tree (i.e., is additive [28]). If all incomplete gene
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trees were identical topologically, our distance matrix would become additive

as the number of genes increased. In the presence of discordance no such

guarantees can be made, but we use this matrix anyway as a heuristic and

note that our algorithm can be used with any similarity (or distance) matrix.

We use Algorithm 5.4 to add missing leaves to the incomplete trees.

Algorithm 5.4 -Completing incomplete gene trees. Adds missing taxon
m to tree t using similarity matrix S according to the four point condition.
arbLeaf(x) choses an arbitrary leaf under node x (by default, the left-most
child). addChild(x, y) adds y as a child of x.

function place(t, S,m)
closest← argmini 6=m S[i,m]
reroot(t, closest)
u← child(closest)
while true do

if isLeaf(u) then
n← Parent(u)
break

(l, r)← (left(u), right(u))
(lc, rc)← (arbLeaf(lc), arbLeaf(rc))
betterSide← fourPoint(S,m, closest, lc, rc)
if betterSide = closest then

break
else if betterSide = lc then

u← l
else if betterSide = rc then

u← r
addAsChild(u,m)

function fourPoint(S,m, a, b, c)
as← S[m, a] + S[c, b]− (S[m, c] + S[a, b])
bs← S[m, b] + S[a, c]− (S[m, a] + S[b, c])
cs← S[m, c] + S[b, a]− (S[m, b] + S[c, a])
max← max(as, bs, cs)
return c if max = c else b if max = b else a
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This heuristic algorithm first finds the taxon that has the highest sim-

ilarity to the missing taxon m; it then roots the tree at this closest species c

and traverses the nodes of the tree from root to the leaves. At each traversal

point u, it decides whether it should move further down to the left (l) or the

right (r) child of the current node u (we are assuming binary input genes, but

extensions are straight forward), or if it should place the taxon at the branch

above the current node. It arbitrarily chooses two leaves lc and rc under l and

r (by default we choose the left most leaf). It places the taxon at the current

branch iff m is closer to c than it is to either lc or rc according to the four point

condition. If m is closer to one of the two arbitrarily chosen nodes, say lc, it

choses that child of u, say l, as the next traversal nodes. Note that for each

taxon x and any other three taxa, we can answer which of the three is closer to

x by examining the four point conditions for all three possible topologies and

finding which four point condition is closer to holding true (i.e., has a lower

residual).

5.2.3.3 Multifurcating input gene trees

Although true gene trees are assumed to be binary, estimated gene trees

can include polytomies. For example, some ML programs such as FastTree

produce polytomies when several leaves have identical sequences. In maximum

parsimony estimation of gene trees, if there are multiple trees with equal scores,

a consensus of the trees is typically used, which can also result in polytomies.

Most importantly, when bootstrapping (or other approach for obtaining branch
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support) are used, one can collapse low support branches in the gene trees,

with the hope that impacts of gene tree estimation error are reduced [25, 29].

Extending ASTRAL to inputs that include polytomies requires solving

the weighted quartet tree problem when each node of the input defines not

a tripartition, but a multi-partition of the set of taxa. We start by a basic

observation: every resolved quartet tree induced by a gene tree maps to two

nodes in the gene tree regardless of whether the gene tree is binary or not

(Fig. 5.4). In other words, induced quartet trees that map to only one node

of the gene tree are unresolved.

When maximizing the quartet support, these unresolved gene tree quar-

tet trees are inconsequential and need to be ignored. Now, consider a polytomy

of degree d, which divides the set of taxa into d parts. There are
(
d
3

)
ways to

select three parts around the polytomy, and each of these defines a triparti-

tion. Any selection of two taxa from one part of this tripartition and one taxon

from each of the remaining two parts induces a resolved quartet tree, and each

resolved quartet tree maps to exactly two nodes in our multifurcating tree.

Thus, all the algorithmic assumptions of ASTRAL remain intact, as long as

for each degree d node in an input gene tree, we treat it as a collection of
(
d
3

)
tripartitions. Thus, to score a species tree tripartition x = (X1|X2|X3) with

respect to a gene tree multi-partition y = Y1| . . . |Yd, we let Cij = |Xi ∩ Yj| for

all i ∈ {1, 2, 3} and j ∈ {1, . . . , d}, and we generalize Equation 5.2 to:

H(x, y) = H(C) =
∑

(a,b,c)∈P3

F (C1a,C2b,C3c) (5.6)
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Figure 5.4: Multipartitions in unrooted gene trees. A polytomy divides
the set of taxa into more than three parts (here, d = 4). A quartet tree
mapped to two nodes (e.g., ab|cd) is a resolved quartet topology and needs
to be counted towards WQ. A quartet tree mapped to only one node (e.g.,
ab|ce) is an unresolved quartet, and does not contribute to WQ; these need
to be ignored. By treating the polytomy as a collection of

(
d
3

)
tripartitions

(in this case, X1|X2|X3, X1|X2|X4, X1|X3|X4, and X2|X3|X4), we ensure that
all resolved quartet trees are counted and all unresolved quartet trees are left
out. For example, here, ab|ce would not be counted in our collection of

(
d
3

)
tripartitions since each of its taxa are on a different part.

where P3 is the set of all ordered subsets of size 3 from {1, . . . , d}.

Extending Algorithm 5.1 to compute Equation 5.6 is straightforward.

The leaves are treated the same. For internal nodes, instead of popping two

values from the stack, d − 1 values are popped and are summed to calculate

the tuple for the traversal node. All
(
d
3

)
ways of choosing three subsets around

that polytomy are then iterated over and H values are summed.

In the presence of polytomies, the running time analysis can change
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because analyzing each polytomy requires time cubic in its degree and the

degree can increase with n. It is not hard to see that the worst case is when

all gene trees have a polytomy with d = n
2

and each side of each polytomy

has two leaves; in this case, Algorithm 5.1 would require
(n

2
3

)
calculations,

which requires O(n3) running time; thus, the running time of ASTRAL-II is

O(n3k|X|2) instead of O(nk|X|2) in presence of polytomies.

5.3 Evaluation of ASTRAL-I on simulated data

5.3.1 Experimental setup

We evaluate ASTRAL-I on a collection of simulated datasets. Our

simulation procedure is similar to what was used in Chapter 4. Simulated

data are generated under the GTR+MSM model by first simulating gene trees

down a species tree according to MSM and then simulating sequence data

down each gene tree according to GTR. Gene trees are then estimated form

the sequence data, and species trees are estimated from the gene trees using

various summary methods. We also run concatenation under maximum likeli-

hood (CA-ML) on the sequence data. The accuracy of the estimated species

tree is evaluated against the model true species tree using the Robinson-Foulds

(RF) [30] rate; because all species trees estimated here are completely bifurcat-

ing, this is the same as the missing branch rate (proportion of internal edges

in the model tree missing in the estimated tree).
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5.3.1.1 Datasets

100-taxon simulated datasets. These data were generated by Yang and

Warnow [7]; we briefly describe the simulation process and direct the reader to

the original publication [7] for details. The 100-taxon model species tree was

created by a birth-death process, and 25 genes were evolved within the species

tree under the MSC, producing ultrametric gene trees. Nucleotide sequences

with 1000 sites were evolved down each gene tree under a process with GTR+Γ

substitutions as well as insertions and deletions, using ROSE [31]. True align-

ments were used to generate estimated gene trees using RAxML.

37-taxon “mammalian” simulated datasets. We use the same mam-

malian simulated dataset used for evaluating statistical binning; Chapter 4

gives details of the simulation procedure, which we summarize here.

We simulated this collection of datasets based on a 37-taxon mam-

malian dataset with 447 genes studied in [32]. First, we used MP-EST to

estimate a species tree on the biological dataset from [32], and used it as a

model species tree, with branch lengths in coalescent units. We evolved gene

trees down the model tree under the MSC model using Dendropy [33], and

then rescaled the gene trees to deviate from the molecular clock and produce

branch length patterns observed in the biological dataset. We then evolved

sequences with 500 and 1000 sites down each gene tree under the GTR model

of site evolution, using GTR parameters estimated on the biological dataset.

This produces the “default” model condition that has the amount of ILS es-
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timated for this dataset by MP-EST. We varied this protocol by scaling the

model species tree branch lengths up (2X and 5X) or down (0.2X and 0.5X)

to modify the amount of ILS; longer branch lengths reduces ILS, and shorter

branch lengths increases ILS. The default model tree conditions (including the

number of genes, sequence length distribution, and amount of ILS) were set

to produce a dataset called the “mixed condition” that most resembled the

biological dataset.

The average bootstrap support (BS) in the biological data was 71%,

and so we generated sequence lengths that produced estimated gene trees with

BS values bracketing that value – 500bp alignments produced estimated gene

trees with 63% average bootstrap support and 1000bp alignments produced

estimated gene trees with 79% BS. The “mixed dataset” of 400 genes was

produced using 200 genes with 63% BS and 200 genes with 79% BS, and had

average BS of 71% - like the biological data.

We vary ILS levels, the number of genes, and sequence length. We

go up to 3,200 genes for the most challenging conditions with 0.2X branch

lengths (thus, very high ILS). For each model condition (specified by the ILS

level, the number of genes, and the sequence length), we created 20 replicates,

except for the 1600- and 3200-gene model conditions where we created 10 and

five replicates respectively. We used RAxML to estimate gene trees on the

simulated sequence alignments, and we generated 200 ML bootstrap replicates

for the mixed dataset.
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5.3.1.2 Methods

We compare ASTRAL-I with MP-EST [3], BUCKy-pop (the popu-

lation tree from BUCKy [6]), MRP (a supertree method [34]), the Greedy

Consensus, and CA-ML computed by RAxML. Of these six methods, three

are statistically consistent summary methods, two are inconsistent summary

methods, and CA-ML is also inconsistent Note that BUCKy takes into account

gene tree uncertainty and other methods don’t [35].

For 100-taxon datasets and the mixed mammalian datasets, we ran

summary methods using three different procedures: using maximum likeli-

hood gene trees as input (bestML), using all bootstrap replicates of all genes

as input (All BS), and using the site-only multi-locus bootstrapping (MLBS)

procedure [36], described in Chapter 4. For MLBS, we used the greedy consen-

sus of 200 replicate species trees, each computed on an input consisting of one

bootstrap replicate tree per gene. BUCKy-pop takes as input distributions of

gene trees, and its authors intended a Bayesian distribution to be the input;

following results from Yang and Warnow [7], we approximate the distribution

using bootstrap gene trees which are less computational intensive to generate

and have resulted in the same accuracy as Bayesian trees in some analyses [7];

thus, BUCKy-pop is run with a procedure analogous to All BS. In subsequent

analyses, where we study the impact of various model parameters, we only

study the bestML approach. Exact commands and versions used are given in

Appendix A.1.1.
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5.3.2 Simulation results

5.3.2.1 Results on mammalian simulated datasets

We address the following three research questions on the mammalian

simulated dataset, in three separate experiments.

RQ1: Given a choice of the gene tree input type (bestML, MLBS, or All BS),

which of the six methods produces the best accuracy under the default

mixed condition?

RQ2: How is relative performance of methods affected by the number of genes,

levels of ILS, and gene tree error?

RQ3: How do summary methods compare under the highest levels of ILS if

the number of genes is allowed to increase?

We now describe the results obtained for each question and finish by

discussing the running time of ASTRAL-I in comparison to other methods.

RQ1: Figure 5.5 shows results on the mixed mammalian dataset, compar-

ing all six methods and three types of inputs to summary methods (bestML,

MLBS, and All BS). For MRP, MP-EST and ASTRAL-I, using bestML input

trees produced more accurate species trees than using bootstrap replicates,

either as one input (All BS) or using MLBS. The purpose of using bootstrap

replicates is to take gene tree uncertainty (resulting from insufficient sequence

length, for example) into account; the fact bestML gene trees had the best
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accuracy indicates that for this model condition, using bootstrapping does not

alleviate the gene tree estimation problem. However, it is possible that other

model conditions or other ways of addressing gene tree uncertainty might show

some advantage over the bestML approach. For example, we have found in

other studies that with few genes, the accuracy of the MLBS approach tends

to be higher than the bestML approach, but as the number of genes increases,

bestML becomes better [10]. Nevertheless, in this study we are not seeing

any improvements form the use bootstrapped gene trees. Therefore, we use

bestML input trees in the remaining experiments in this chapter (see [10] for

more comparisons of using bestML or bootstrapped gene trees).

For the mixed model condition and using bestML trees, ASTRAL-I is

the most accurate of these methods, MP-EST the next most accurate, followed

by the other summary methods, and finally by CA-ML. ASTRAL-I with any

of the three sets of inputs is also more accurate than BUCKy-pop; however,

differences between ASTRAL-I on All BS and BUCKy-pop are relatively small.

RQ2: We now explore variants of the basic mammalian simulation, exploring

the impact of changes to the number of genes, gene sequence length, and the

ILS level (by scaling the species tree branch lengths) on the absolute and

relative performance of various methods using bestML input. We first fix the

ILS to the default 1X and vary both the number of genes and the sequence

length. We then fix the number of genes to 200, and sequence length to

500bp, and vary the amount of ILS, in both cases also showing results on

42



CA-ML

Figure 5.5: Species tree estimation error on the default mixed mam-
malian datasets.. This dataset has 200 genes with 500bp and 200 genes with
1000bp, which results in 71% mean BS. We show the missing branch rates for
estimated species trees computed using summary methods (MRP, MP-EST,
greedy, BUCKy-pop, and ASTRAL-I) as well as concatenation using RAxML.
Results are shown for running summary methods on maximum likelihood gene
trees (bestML) and on the set of all bootstrap replicates from all genes (All
BS), as well as the greedy consensus of running summary methods on indi-
vidual bootstrap replicates from all genes (MLBS). CA-ML is run on the true
alignment. Average and standard error shown based on 20 replicates.
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true (simulated) gene trees. Figure 5.6 shows results for this experiment for

all these model conditions. General trends as we changed parameters were

as expected: all summary methods gave improved accuracy as the sequence

length in each gene increased from 500bp to 1000bp; using true gene trees gave

the best results; species tree error rates generally reduced as the number of

genes increased; and species tree error rates increased as ILS levels increased.

ASTRAL-I was commonly more accurate than all the other summary

methods we studied. ASTRAL-I was never outperformed by other summary

methods; however, for a few cases, ASTRAL-I and one or more summary

methods had identical accuracy. For example, on 800 true gene trees from

default ILS levels, all summary methods (except for Greedy) produced the

true species tree. We performed an ANOVA test comparing the species tree

accuracy differences between ASTRAL and MP-EST, with the amount of ILS,

number of genes, and the sequence length as independent variables. ASTRAL

was significantly better than MP-EST (p < 10−5) and the relative accuracy of

ASTRAL and MP-EST depended only on the amount of ILS (p = 0.008), but

not the number of genes (p = 0.8) or gene sequence length (p = 0.3).

Comparison of ASTRAL-I and CA-ML was interesting. ASTRAL-I

was more accurate than CA-ML in general (p < 10−5 according to an ANOVA

test); however, the relative performance depended significantly on the level

of ILS (p < 10−5). With reduced ILS, CA-ML had better accuracy than

all summary methods, including ASTRAL, but as the level of ILS increased,

ASTRAL became more accurate.
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(a) 1X ILS, varying number of genes and gene tree resolution

(b) 200 genes, varying ILS levels
True gene trees

ILS Levele (ST branch length scaling)

Estimated gene trees (500bp)

True gene trees True gene trees True gene trees

CA-ML

Figure 5.6: Species tree estimation error on the simulated mammalian
datasets, varying simulation parameters. We show the missing branch
rates for estimated species trees computed using summary methods (MRP,
MP-EST, greedy, and ASTRAL-I) as well as CA-ML. Summary methods are
run on RAxML bestML gene trees and true gene trees, and CA-ML is run
using RAxML. (a) Default levels of ILS, varying the number of genes and gene
tree resolution; (b) 200 genes, varying the amount of ILS from very low (5X
species tree branch lengths) to very high (0.2X species tree branch lengths).
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RQ3: For the most challenging ILS level, where with 200 genes the error was

still high for all methods including ASTRAL-I, we asked whether increasing the

number of genes reduces the error, as expected by the statistical consistency

of ASTRAL-I. Figure 5.7 shows results for the case where fix the ILS level to

0.2X (very high) and increase the number of genes up to 3,200. As we increase

the number of genes, the error reduces for all summary methods, except for

the greedy consensus. With 3,200 gene trees, ASTRAL-I has 0.5% error, with

true gene trees, and only 1.5% error with estimated trees. Thus, even with the

most challenging ILS scenarios, with increased number of genes, high accuracy

can be obtained. MP-EST also has reduced error with increased number of

genes, but is always less accurate than ASTRAL-I. For example, the error of

MP-EST with 1600 true gene trees is 4.1%, which is exactly the same as the

error of ASTRAL-I with 800 genes, but with 1,600 true gene trees, ASTRAL-I

has 2.0% error.

Running time. We examine running times under moderate ILS, gene se-

quences of length 500bp, and with 400 and 800 genes and with bestML input

trees (except for BUCKy-pop). BUCKy-pop strictly runs in serial, using a

Bayesian MCMC technique, which can take a long time and substantial mem-

ory to reach convergence. On the 37-taxon mammalian simulated datasets,

BUCKy-pop ran to completion for datasets with up to 400 genes (where it

took approximately 5 hours), but failed to complete (due to memory issues)

on the 800-gene dataset.

46



0.2X (much increased ILS), varying number of genes
True gene trees

Number of genes

Estimated gene trees (500bp)

Figure 5.7: Species tree estimation error on the simulated mammalian
datasets with highest level of ILS. We show the missing branch rates for
estimated species trees computed using summary methods (MRP, MP-EST,
greedy, and ASTRAL-I) run on RAxML bestML gene trees and true gene
trees. ILS levels are fixed to 0.2X (very high) and the number of genes is
increased to 3200.

MP-EST completed relatively quickly - about 100 minutes - for both

the 400-gene and 800-gene datasets. We ran MP-EST with 10 random starting

points, so this time could be reduced by using just one starting point, but with

a potential decrease in accuracy.

ASTRAL-I completed in 3.3 seconds on the 400-gene dataset, and in

5.3 seconds on the 800-gene dataset. Thus, ASTRAL-I is dramatically faster

than the other methods, and able to run on these moderately large datasets in
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extremely short time frames. However, BUCKy is used with 200 bootstrapped

gene trees for each gene, and outputs support values. Running ASTRAL-I and

MP-EST using MLBS to obtains support values would increase their running

times if run in serial, but ASTRAL-I would still be much faster than BUCKy

(e.g., 11 minutes on the 400-gene dataset rather than 5 hours). In addition,

parallelizing MLBS is trivial since each bootstrap replicate is independent.

Finally, Figure 5.8 shows how the running time of ASTRAL-I is im-

pacted by the number of genes and the level of ILS. The running time of

ASTRAL-I increases as the level of ILS is increased, because the set X is

populated with more bipartitions when gene trees have high levels of ILS. As

the number of genes are increased, the number of unique bipartitions in input

gene trees increases, which increases the time required to calculate the score

function w, and also the size of the set X is likely to increase. Thus, both fac-

tors impact the running time, but even under the most challenging conditions

(3200 genes of 0.2X ILS level), ASTRAL-I finished in about two hours on the

mammalian dataset.

5.3.2.2 100-taxon dataset

We evaluated the feasibility of using ASTRAL-I on datasets with large

numbers of taxa using the 100-taxon simulated datasets, with 25 genes and

10 replicates. Because there is no single outgroup, the estimated trees are not

rooted, and so we could not use MP-EST. ASTRAL-I had no difficulty ana-

lyzing these data (completing in under one second). ASTRAL-I had average
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Figure 5.8: Running time of ASTRAL. We show the running time for
default ASTRAL on the mammals simulated datasets with (top) varying levels
of ILS with 200 genes of 500bp resolution, and (bottom) varying number of
true gene trees with much increased ILS level (0.2X).
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Table 5.2: Results on 100-taxon dataset. Average FN rates (over 20
replicates) of different methods on the 100-taxon 25-gene simulated datasets.
The dataset does not have an outgroup, and therefore, we could not run MP-
EST on it. Gene trees and CA-ML are estimated using RAxML.

Method bestML All BS

CA-ML 0.057
ASTRAL 0.061 0.052
Greedy 0.064 0.056
MRP 0.064 0.055

missing branch rate of 6.1%, better than MRP and Greedy (6.4%), but not as

good as CA-ML (5.7%); differences are not statistically significant (p > 0.1;

paired Wilcoxon test).

5.3.3 Summary of results

In our study, ASTRAL-I was more accurate than MP-EST and BUCKy-

pop, two leading coalescent-based methods, and improved or matched the ac-

curacy of concatenation under maximum likelihood under many conditions,

except when the amount of ILS was very low, where concatenation was more

accurate. This study also showed that concatenation could be more accu-

rate than coalescent-based estimation, provided that the amount of ILS is low

enough. However, the best coalescent-based methods can be more accurate

than concatenation under biologically realistic conditions.

Using bootstrap replicate gene trees instead of best ML gene trees did

not improve species tree estimation accuracy on the simulated mixed mam-

50



malian dataset – and in fact made species tree estimations less accurate for

MRP, MP-EST and ASTRAL-I. Similar results have been observed by others

when taking gene tree estimation error into account [37]. This suggests the

possibility that the topological error in bootstrap gene trees is large enough

to offset any improvement in species tree estimation obtained by taking gene

tree uncertainty into account. However, it is possible that an improvement

might be obtained under other conditions, or that using a sample of gene trees

estimated by a Bayesian MCMC analysis might be better suited to coalescent-

based species tree estimation methods than maximum likelihood bootstrap

trees, as suggested by [12] (although see [7]).

5.4 Evaluation of ASTRAL-II on simulated data

Our experiments on ASTRAL-I were all using relatively small datasets;

we had either few species and large numbers of genes, or moderately large

numbers of species and few gene trees. Here, we report the result of a more

extensive simulation study that shows under certain conditions ASTRAL-I

can have reduced accuracy because of the restrictions imposed by the default

setting of the set X. We show that ASTRAL-II addresses these problems, and

we demonstrate that ASTRAL-II can run on datasets with up to 1000 genes

and 1000 species in about a day.
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5.4.1 Experimental setup

5.4.1.1 Dataset

We used SimPhy [38] to simulate species trees and gene trees under

MSC and to generate gene trees in mutation units, and then used Indeli-

ble [39] to simulate nucleotide sequences down the gene trees according to

GTR with varying length and model parameters. We estimated gene trees on

these simulated gene alignments, which we then used as input to ASTRAL-I,

ASTRAL-II, NJst [8], and MP-EST, in addition to concatenation.

We used SimPhy to simulate species trees according to the Yule pro-

cess, characterized by the number of taxa, maximum tree length, and the

speciation rate (this combination defines a model condition). We simulated 11

model conditions, which we divide into two datasets, with one model condition

appearing in both datasets.

Dataset I: In 6 model conditions (forming Dataset I), we fixed the number

of taxa to 200 and varied tree length (500K, 2M, and 10M generations), and

speciation rates (1e-6, and 1e-7 per generation). The tree length impacts the

amount of ILS, with lower length resulting in shorter branches, and therefore

higher levels of ILS (Fig. 5.9). Speciation rate impacts whether speciation

events tend to happen close to the tips (1e-06) or close to the base (1e-07).

Different tree shapes (i.e., combinations of tree length and speciation rate)

produce different levels of ILS starting from relatively low and going up to

very high. The 10M/1e-06 condition had 0% to 20% distance between true
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gene trees and the species tree, measured by the RF distance, whereas 500K

length (with 1e-06 or 1e-07 rate) had between 60% and 80% RF distance

(Fig. 5.9). Thus, the 500K length has the highest ILS levels and 10M has the

lowest, and 2M is in between.

Dataset II In six model conditions (forming Dataset II), we fixed the tree

shape to 2M/1e-06 (medium ILS levels) and set the number of taxa to 10,

50, 100, 200, 500, and 1000. The amount of ILS only slightly increased as we

increased the number of species (Fig. 5.9). Note that the model condition

with 200 taxa and the 2M/1e-6 tree shape appears in both datasets.

For each model condition, we simulated 50 species trees, forming 50

replicates. On each species tree, 1000 gene trees were simulated according to

the MSC model with the population size fixed to 200,000 (a reasonable value

for vertebrates). SimPhy uses various rate parameters and rate heterogeneity

modifiers to convert gene tree branch lengths to mutation units, introducing

deviations from molecular clock and rate heterogeneity between genes. Pa-

rameters for these simulations are given in Appendix A.2.1.

We simulated indel-free gene alignments using Indelible [39] under the

GTR+Γ model. First, for each replicate, two parameters, µ and σ, were drawn

uniformly from (5.7, 7.3) and (0, 0.3) respectively. Then, the sequence length

for each gene in that replicate was drawn from a log-normal distribution with

µ and σ parameters (thus, average sequence length is uniformly distributed

between 300bp and 1500bp). GTR+Γ parameters were drawn from a Dirich-
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Figure 5.9: ILS levels in ASTRAL-II simulation data. RF distance be-
tween the true species tree and the true gene trees (50 replicates of 1000 genes)
for (a) Dataset I and (b) Dataset II. Tree height directly affects the amount
of true discordance; the speciation rate affects true gene tree discordance only
with 10M tree length. The number of taxa has a modest effect on the amount
of ILS.
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let(36,26,28,32) distribution; we estimated the Dirichlet parameters from a

collection of biological datasets using ML (see Appendix A.2.2 for details).

5.4.1.2 Methods

Gene tree estimation: Previous studies [40] have shown that FastTree-

II [41] is generally as accurate at estimating the tree topology as more extensive

ML heuristics such as RAxML [42], while being much faster. In our simulation

studies, we used FastTree to estimate the 550,000 gene trees ranging from 10

to 1000 species. Our estimated gene trees had wide-ranging levels of gene tree

estimation error (see Figure 5.10). The tree error was impacted by tree shape

parameters; as expected, more ILS and deeper speciation lead to higher levels

of gene tree error. Moreover, average gene tree estimation error varied across

replicates, and gene tree error varied considerably among the 1000 genes in

each replicate (Fig. 5.10). The number of taxa had only a small impact on

gene tree estimation error.

FastTree outputs polytomies when sequence alignments cannot distin-

guish between competing tree resolutions. We removed any gene tree where

more than 50% of the internal nodes were polytomies because they would

not add much new information but would increase the running time of AS-

TRAL (and would be randomly resolved for other methods). This pruning

left fewer than 500 genes for 9 out of 550 replicates in some model condi-

tions: 200-taxon/500K/1e-06 (3 replicates), 50-taxon (3 replicates), 100-taxon

(2 replicates), and 10-taxon (1 replicate). We removed these 9 replicates.
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Figure 5.10: Gene tree estimation error in simulated ASTRAL-II
datasets. Many parameters (e.g. alignment length, gene tree length, and
substitution rates) were varied in a heterogeneous way to simulate 50 repli-
cates per model condition with varying gene tree estimation error. Top: each
box (box title: number of taxa, height, rate) shows averages and standard
deviations of gene tree estimation error (across 1000 genes) for each replicate.
Note wide variations in gene tree error across and within replicates. Bottom:
both tree height and rate (left) affect gene tree estimation error; more ILS
and deeper speciation result in higher error rates. With fixed tree shape (2M,
1e-06), changing the number of taxa (right) has little impact on the gene tree
estimation error. 56
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Figure 5.11: Impact of polytomies. Comparison of ASTRAL-II run on
estimated gene trees with polytomies output by FastTree and with random
resolutions of polytomies. Results are shown for dataset-I.

Species tree methods: We compared ASTRAL-I only to ASTRAL-II, and

after establishing the improvements obtained in ASTRAL-II, we focused on

the new version and compared it to MP-EST, NJst and CA-ML run using

FastTree. We ran all methods given a maximum of 4 days of running time

and 24GB of memory. MP-EST only finished for datasets with at most 100

taxa within time limits. Because of its running time, we ran MP-EST once

(one random seed number) for each analysis. NJst, ASTRAL-I and MP-EST

could not handle polytomies; therefore, we randomly resolved polytomies in

inputs of these methods. We also ran ASTRAL-II on gene trees with randomly

resolved polytomies and observed no differences with ASTRAL-II run on gene

trees with polytomies (Fig. 5.11). Thus, differences between ASTRAL-II and

other methods were not due to the random resolutions of polytomies.
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5.4.1.3 Evaluation criteria

We evaluate methods in terms of species tree error and we also evaluate

running time for coalescent-based methods. Species tree error is measured us-

ing the standard normalized RF distance. Running time of summary methods

gives the wall clock running time and is measured on a heterogeneous Condor

cluster at the University of Texas, Computer Science department.

5.4.2 Simulation results

We start by comparing ASTRAL-II with ASTRAL-I in terms of accu-

racy and running time (RQ1). We next focus on ASTRAL-II and compare

it to other coalescent-based methods (RQ2) and then compare it to CA-ML

(RQ3). This question leads us to a more in depth analysis of the effects of

gene tree estimation error on the accuracy of various methods (RQ4). Finally,

we evaluate the impact of collapsing low support branches in input gene trees

on the accuracy of ASTRAL-II (RQ5).

5.4.2.1 RQ1: ASTRAL-I versus ASTRAL-II

Search space: ASTRAL-II adds extra bipartitions to the search space,

which allows it to explore a larger search space; this tends to increase the

accuracy of ASTRAL-II over ASTRAL-I. In our simulations, the extent of the

improvement depended on the model condition. Table 5.3 shows the improve-

ments obtained by ASTRAL-II compared to ASTRAL-I, and Figures 5.12 and

5.13 compare the two methods in terms of accuracy for Datasets I and II. In
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Dataset I, with the lowest level of ILS or with the medium ILS level and

recent speciation, ASTRAL-I and ASTRAL-II both had extremely low error

(Fig. 5.12) and no substantial improvements were detected by the addition of

extra bipartitions (Table 5.3). With 2M length and deep speciation, ASTRAL-

II improved upon ASTRAL-I substantially, with improvements ranging from

3.5% with 1000 genes to 10.1% with 50 genes. Most dramatic differences were

observed on the high ILS conditions, where ASTRAL-I performed extremely

poorly, but ASTRAL-II reduced the error by about 40% (Table 5.3). Results

on Dataset II showed that the effect of adding extra bipartitions also depended

on the number of taxa in expected ways (Table 5.3): ASTRAL-I was as accu-

rate as ASTRAL-II for up to 200 taxa, but with 500 taxa or more, ASTRAL-II

had a substantial advantage (as large as 9%). As expected, the advantage of

ASTRAL-II was larger with few genes and reduced with more genes.

The improvements obtained by ASTRAL-II are due to additions to the

search space. We therefore asked whether the heuristic approaches used to

add bipartitions to set X are sufficient, or improvements could be obtained

by further expanding X. To answer this question, we tested the impact of

adding all the bipartitions from the species tree to the set X, and compared

ASTRAL-II with and without these extra bipartitions (see Figs. 5.12 and 5.13).

We saw no significant differences between ASTRAL-II with and without these

potentially new bipartitions (p=0.77 according to a two-way ANOVA test),

indicating that the accuracy of ASTRAL-II is very unlikely to be improved

further by expanding the search space.
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Figure 5.12: Comparison of ASTRAL-I and ASTRAL-II on Dataset-I.
Species tree error (top) and running times (bottom) are shown. “ASTRAL-II
+ true st” shows the case where the true species tree is added to the search
space; this is included to approximate an ideal solution (e.g. exact) where the
set X includes all bipartitions that lead to the optimal score.
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Figure 5.13: Comparison of ASTRAL-I and ASTRAL-II on Dataset-
II. Species tree error (top) and running times (bottom) are shown. “ASTRAL-
II + true st” shows the case where the true species tree is added to the search
space; this is included to approximate an ideal solution (e.g. exact) where the
set X includes all bipartitions that lead to the optimal score.

61



Table 5.3: Reductions in species tree error obtained by ASTRAL-II
compared to ASTRAL-I. We report results using the difference in RF
percentage; values above 0.0% indicate ASTRAL-II is more accurate.

Dataset I [200 taxa, varying tree shape (columns) and number of genes (rows)]
10e-6 (recent) 10e-7 (deep)

10M 2M 500K 10M 2M 500K

50 0.2±0.2 0.7±0.3 37.9±1.0 1.7±0.6 10.1±0.9 38.7±0.9
200 0.0±0.1 0.2±0.1 41.0±1.1 0.7±0.3 7.4±0.7 41.4±1.0
1000 0.0±0.0 0.2±0.1 39.2±1.2 0.0±0.0 3.5±0.7 41.4±1.1

Dataset II [2M/1e-6 shape, varying the number of taxa (columns) and genes
(rows)]

10 50 100 200 500 1000

50 0.3±0.3 0.0±0.1 0.3±0.2 0.7±0.3 6.0±0.6 9.3±0.6
200 0.0±0.0 0.0±0.0 0.0±0.0 0.2±0.09 3.9±0.5 8.3±0.5
1000 0.0±0.0 0.1±0.1 0.0±0.0 0.2±0.08 1.7±0.4

Running time: With 200 taxa and lower levels of ILS, ASTRAL-I and

ASTRAL-II had similar running times (Fig. 5.12), but ASTRAL-II was faster

with increased ILS (3 versus 7.5 hours of median run time). The improvement

in speed is noteworthy, given that ASTRAL-II searches a larger tree space than

ASTRAL-I. With small numbers of taxa, the two versions had close running

times, but as the number of taxa increased, the running time of ASTRAL-II

increased more slowly (Fig. 5.13). For 500 taxa, ASTRAL-II was twice as

fast as ASTRAL-I (a median of 5 versus 10 hours), while ASTRAL-I did not

complete on 1000 taxa and 1000 genes.
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5.4.2.2 RQ2: ASTRAL-II vs. other summary methods

Completion within time constraints: ASTRAL-II completed on all model

conditions, MP-EST completed only on datasets with at most 100 taxa, and

NJst completed on all model conditions except for the condition with 1000

genes and 1000 taxa.

Dataset I: ASTRAL-II was more accurate than NJst in all model conditions,

except 1e-07/500K where the two methods had identical error (Table 5.4, Fig.

5.14). Overall, the differences between ASTRAL-II and NJst were statistically

significant (p < 10−5), according to a two-way ANOVA test, and the relative

performance of the methods was significantly impacted by the speciation rate

(p = 0.026) but not by the number of genes or tree length. ASTRAL-II was

faster than NJst, in some cases by an order of magnitude (Fig. 5.15).

Dataset II: On 10-taxon datasets all methods had high accuracy (Table

5.12). On 50- and 100-taxon datasets, MP-EST was able to finish, but it was

the least accurate of all the methods. ASTRAL-II was more accurate than

NJst for all conditions except for 50 taxa with 50 genes (Table 5.12); however,

differences were generally small when the number of taxa was 200 or less, and

more substantial with more taxa. Overall, differences between ASTRAL-II

and NJst were significant (p = 0.0007) and were significantly impacted by the

number of taxa (p = 0.0004) but not the number of genes. ASTRAL-II was

also faster than NJst, especially with more genes and more taxa (Fig. 5.15).
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Table 5.4: Species tree error on Dataset I of ASTRAL-II analyses. We
show average and standard error of RF percentage. ASTRAL-II is always more
accurate than NJst, but CA-ML (using FastTree) is sometimes more accurate
than ASTRAL. For each row, the lowest average error and those error values
that have an overlapping standard error with the lowest error value are in
bold.

rate height genes ASTRAL-II NJst CA-ML

1e-06 10M 50 5.2±0.5 5.6±0.6 5.4±0.3
1e-06 10M 200 3.1±0.4 3.4±0.5 3.1±0.3
1e-06 10M 1000 2.0±0.4 2.3±0.5 1.4±0.2

1e-06 2M 50 8.4±0.6 9.1±0.7 9.2±0.4
1e-06 2M 200 5.0±0.6 5.6±0.6 5.5±0.5
1e-06 2M 1000 3.4±0.6 3.9±0.6 2.8±0.4

1e-06 500K 50 17.6±0.7 20.9±0.7 27.9±0.7
1e-06 500K 200 9.6±0.5 11.0±0.5 16.2±0.7
1e-06 500K 1000 5.3±0.5 5.7±0.4 8.0±0.3

1e-07 10M 50 7.3±0.9 10.2±1.0 4.0±0.4
1e-07 10M 200 5.4±0.7 8.2±1.0 2.2±0.3
1e-07 10M 1000 5.0±0.8 8.0±1.0 1.8±0.3

1e-07 2M 50 10.2±0.6 11.7±0.7 10.3±0.3
1e-07 2M 200 6.0±0.5 7.5±0.7 5.7±0.3
1e-07 2M 1000 4.4±0.6 6.0±0.7 2.8±0.2

1e-07 500K 50 19.3±0.7 22.5±0.6 28.2±0.6
1e-07 500K 200 10.7±0.6 11.4±0.5 16.1±0.7
1e-07 500K 1000 6.3±0.5 6.3±0.5 8.0±0.4
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Table 5.5: Species tree error on Dataset II. of ASTRAL-II analyses.
We show average and standard error of RF percentage. Note that ASTRAL-II
is always more accurate than MP-EST, and more accurate than NJst under
all conditions except one (50 taxa and 50 genes), where NJst is slightly more
accurate (7.2% vs. 7.3%). CA-ML (using FastTree) is also less accurate than
ASTRAL, except for 100 taxon and 200 or 1000 genes, where the two methods
differ in less than 0.5%. For each row, the lowest average error and those error
values that have an overlapping standard error with the lowest error value are
in bold.

taxa genes ASTRAL-II NJst CA-ML MP-EST
10 50 2.8±1.0 2.8±1.0 3.8±0.9 2.8±1.0
10 200 1.5±0.7 1.5±0.7 1.8±0.7 1.8±0.7
10 1000 1.5±0.7 1.8±0.7 2.1±0.8 1.5±0.7

50 50 7.3±0.7 7.2±0.6 7.8±0.6 13.5±1.7
50 200 4.2±0.5 4.4±0.5 4.5±0.4 9.1±1.5
50 1000 2.6±0.4 2.7±0.5 2.7±0.4 8.2±1.5

100 50 7.9±0.5 8.7±0.5 9.1±0.4 16.9±1.3
100 200 4.8±0.5 5.1±0.6 4.7±0.4 13.7±1.5
100 1000 3.0±0.4 3.9±0.6 2.5±0.3 14.1±1.55

200 50 8.4±0.6 9.1±0.7 9.2±0.4
200 200 5.0±0.6 5.6±0.6 5.5±0.5
200 1000 3.4±0.6 3.9±0.6 2.8±0.4

500 50 8.0±0.4 9.7±0.5 9.2±0.3
500 200 4.9±0.3 6.1±0.5 4.7±0.2
500 1000 3.3±0.4 4.7±0.5 2.3±0.1

1000 50 9.9±0.7 12.1±0.9 9.8±0.3
1000 200 6.0±0.7 7.9±0.9 5.1±0.2
1000 1000 4.5±0.7

65



10M 2M 500K

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

1e−
06

1e−
07

50 200 1000 50 200 1000 50 200 1000
genes

S
pe

ci
es

 tr
ee

 to
po

lo
gi

ca
l e

rr
or

 (
R

F
)

  10   50  100

 200  500 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

50 200 1000 50 200 1000 50 200 1000
genes

S
pe

ci
es

 tr
ee

 to
po

lo
gi

ca
l e

rr
or

 (
R

F
)

ASTRAL−II NJst MP−EST CA−ML

Figure 5.14: Comparison of methods with respect to species tree topo-
logical error on ASTRAL-II simulated data. Species tree error is shown
for Dataset-I (top) and Dataset-II (bottom). ASTRAL-II is always at least as
accurate as NJst and MP-EST, but CA-ML (using FastTree) is under some
conditions more accurate.
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Figure 5.15: Running time comparison with varying number of taxa
and genes on Dataset II. Average running time is shown for NJst and
ASTRAL-II. Note that ASTRAL-II is much faster on large datasets.

For example, on 500 taxa and 1000 genes, ASTRAL-II typically finished in 2

to 10 hours, whereas NJst required 12 to 30 hours. MP-EST was the slowest

method, but its running time was not impacted by the number of genes.

5.4.2.3 RQ3: ASTRAL-II vs. CA-ML

Dataset I: Interestingly, the relative accuracy of CA-ML and ASTRAL-II

was significantly impacted by tree length (p < 10−5), speciation rate (p =
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0.00004), and the number of genes (p < 10−5). With lower levels of ILS (10M

and 2M) and recent speciation, CA-ML and ASTRAL-II had close accuracy,

but CA-ML tended to be better with more genes and ASTRAL-II was better

with fewer genes (Table 5.5, Fig. 5.14). With deep speciation and lower ILS,

CA-ML was substantially more accurate than ASTRAL-II, but increasing the

number of genes reduced the gap. At the high ILS levels, ASTRAL-II was

much more accurate than CA-ML for all number of genes and for both recent

and deep speciation.

Dataset II: Overall, differences between ASTRAL-II and CA-ML were not

significant (p = 0.2), but the relative accuracy seemed to be impacted by the

number of genes (p = 0.06). Regardless of the number of taxa, which did

not impact relative accuracy (p = 0.2), CA-ML was slightly more accurate

with 1000 genes, and ASTRAL-II was slightly often more accurate otherwise

(Table 5.5, Fig. 5.14).

Running time: We ran CA-ML and ASTRAL-II on different platforms, and

hence cannot make direct running time comparisons. Nevertheless, we provide

our running time numbers to give a general idea. CA-ML using FastTree on

200-taxon model conditions with 1000 genes took roughly two hours, whereas

ASTRAL-II took roughly one hour to estimate the species tree, and estimating

gene trees also took about 1.5 hours. In general, therefore, the running times

of ASTRAL-II and CA-ML are relatively close on this dataset.
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Figure 5.16: Comparison of ASTRAL-II run on estimated and true
gene trees and CA-ML on Dataset I. The different between ASTRAL-II
with true gene tree (“true gt”) and ASTRAL-II with estimated gene trees in-
dicates the impact of gene tree error. Note that with true gene trees, ASTRAL
has excellent accuracy and is always better than CA-ML (using FastTree).

5.4.2.4 RQ4: Effect of gene tree error

In RQ3, we observed that under some conditions, CA-ML was more

accurate than ASTRAL-II, a pattern that we attribute to high levels of gene

tree error present in our simulations. When true (simulated) gene trees are

used instead of the estimated gene trees, the accuracy of ASTRAL-II is out-

standing, regardless of the model condition (see Fig. 5.16) and ASTRAL-II is

always more accurate than CA-ML. Thus, the fact that CA-ML is occasion-

ally more accurate than ASTRAL-II under lower levels of ILS is related to

estimation error in the input provided to ASTRAL-II.
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In our ASTRAL-II and NJst analyses, gene tree error had a positive

correlation with species tree error (Fig. 5.17), with correlation coefficients that

were similar for ASTRAL-II and NJst. The error of CA-ML also correlated

with gene tree error (obviously the relationship is indirect as factors such as

short alignments impact both CA-ML and gene tree error), but the correla-

tion was weaker than the correlation observed for coalescent-based methods

(Fig 5.18). Interestingly, the correlation between gene tree estimation error

and species tree error was typically higher with fewer genes.

To further investigate the impact of the gene tree error, we divided

replicates of each model condition into three categories: average gene tree

estimation error below 0.25 is labelled low, between 0.25 and 0.4 is labelled

medium, and above 0.4 is labelled high. We plotted the species tree error

within each of these categories (see Figs. 5.19 and 5.20). The relative per-

formance of ASTRAL-II and NJst is typically unchanged across various cat-

egories of gene tree error, but increasing gene tree error tends to increases in

the magnitude of the difference between ASTRAL-II and NJst. Furthermore,

MP-EST seemed to be more sensitive to gene tree error than either NJst or

ASTRAL-II (Fig. 5.20).

The relative performance of ASTRAL-II and CA-ML depended on gene

tree error. For those model conditions where CA-ML was generally more ac-

curate than ASTRAL-II (e.g., 2M/1e-07), ASTRAL-II tended to outperform

CA-ML on the replicates with low gene tree estimation error (Fig. 5.19). Con-

sistent with this observation, we noted that ASTRAL-II was impacted by gene
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Figure 5.17: Correlation between gene tree estimation error and
species tree error for ASTRAL and NJst on Dataset-I. Gene tree
and species tree error correlate well, and the correlation is stronger for fewer
genes and lower levels of ILS. Varying tree shapes are shown in columns and
numbers of genes are showed in rows.
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Figure 5.18: Correlation between gene tree estimation error and
species tree error for CA-ML on Dataset-I. A correlation between gene
tree error (controlled by parameters such as alignment length that also affect
concatenation) and species tree error is detectable for concatenation, but is
smaller compared to NJst and ASTRAL.
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Figure 5.19: Comparison of species tree error on Dataset-I, divided
into three categories of gene tree estimation error. Results are shown
for 200 taxa and varying tree shapes (rows), and varying number of genes
(columns), divided into three categories of gene tree estimation error: low,
medium, and high. 73
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Figure 5.20: Comparison of species tree error on Dataset-II, divided
into three categories of gene tree estimation error. Results are shown
for varying number of taxa (rows), and varying number of genes (columns),
divided into three categories of gene tree estimation error: low, medium, and
high.
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tree error more than CA-ML (Fig. 5.19).

5.4.2.5 RQ5: Collapsing low support branches

ASTRAL-II can handle inputs with polytomies. In this study, because

of the prohibitive costs of applying bootstrapping to datasets of this size, we

have not done bootstrapping on our genes to get reliable measures of support.

However, we do get local SH-like branch support [43] from FastTree-II. Using

these SH-like support values, we collapsed low support branches (10%, 33%,

and 50%) and ran ASTRAL-II on the resulting unresolved gene trees. We

measured the impact of contracting low support branches on the species RF

rate. The median delta RF (error before collapsing minus error after collaps-

ing) is typically zero (Fig. 5.21), never above zero, but in a few cases below zero

(signifying that accuracy was improved in those few cases). However, these

differences are not statistically significant (p = 0.36). Since this analysis was

performed using SH-like branch support values instead of bootstrap support

values (or other ways of estimating support values), it’s hard to generalize and

make conclusions about the use of other measures of support. Further stud-

ies are therefore needed for understanding the effect of collapsing low support

branches in other situations.

5.4.3 Summary of results

Our wide-ranging simulation results show that ASTRAL-II, unlike the

other methods we studied, can analyze datasets with up to 1000 taxa and
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1000 genes within reasonable running times. The next most computationally

feasible method we explored was NJst, but ASTRAL-II was faster and more

accurate than NJst. ASTRAL-II was also much more accurate than MP-EST,

especially with larger numbers of species, but MP-EST was much slower and

could not run on datasets with more than 100 species. Finally, ASTRAL-

II improved upon ASTRAL-I in terms of both accuracy and running time.

ASTRAL-II was more accurate than CA-ML, except when gene tree estimation

error was high and ILS levels sufficiently low.

5.5 Biological Results

5.5.1 Datasets and methods

We analyzed five biological datasets:

• The 1KP dataset from [4], containing 103 plant species and 424 genes.

• The land plant dataset from [44], containing 32 species and 184 genes.

• The angiosperm dataset from [45] containing 42 angiosperm species and

4 outgroups with 310 genes.

• The mammalian dataset from [32], containing 37 species and 447 genes.

• The amniota dataset from [46], containing 16 species and 248 genes.

On these datasets, we compare ASTRAL-II, MP-EST, and concatena-

tion using RAxML (CA-ML). We use gene trees that we estimated for the 1KP
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project; for the amniota and land plant datasets, gene trees were available from

the respective publications. For the mammalian and the angiosperm datasets,

we re-estimated gene trees from the gene alignments that were available. We

used RAxML under the GTR+Γ model with 200 replicates of bootstrapping

and 10 rounds of ML. We used the MLBS procedure [36] to obtain BS values

(see Chapter 4).

In our analysis of the mammalian dataset, we found 21 genes with mis-

labelled sequences (easily confused taxon names, subsequently confirmed by

the authors of [32]). We removed all those and two outliers genes from the

dataset, and re-analyzed the reduced dataset. We used the MLBS procedure

with 100 replicates, with both site and gene resampling, in order to be con-

sistent with [32]. We re-estimated the gene trees using RAxML on the gene

sequence alignments produced by [32].

On the amniota dataset, since the number of taxa is small, we ran the

exact version of ASTRAL; in other cases, we ran ASTRAL-II.

5.5.2 Results

5.5.2.1 1KP dataset

As we noted earlier, analyzing 1KP dataset was one of our motivations

for designing a new summary method. This dataset was very challenging for

existing summary methods; it had 103 species, which is larger than what most

methods are designed for and tested on. Also, since the 103 taxa span close

to a billion years of evolution, rooting gene trees was challenging; finally, no
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single gene tree was complete, and some gene trees had substantial levels of

missing data (note that this also affects the ability to root gene trees) As we

noted before, the other summary methods were not able to produce reliable

species trees on this dataset.

There are several interesting questions about plant evolution that this

dataset can help answering, but three stand out.

Sister to land plants: The sister species to a clade including all the land

plants remains unresolved. Two sets of streptophyte algae, Charales, and

Coleochaetales, share complex characteristics with land plants (e.g., oog-

amous sexual reproduction and parental retention of the egg), which tra-

ditionally lead to the belief that Charlales, or Charales+Coleochaetales

are sister to land plants. However, previous molecular analyses have in-

ferred many different possible sister clades, including the following four

major hypotheses: Zygnematales [47–49], Coleochaetales [50], Zygne-

matales + Coleochaetales [51], and Charales [52].

Bryophytes: Mosses, liverworts, and hornworts (collectively called bryophytes)

are plants that separated out from other land plants early in the evolu-

tion of land plants. All various possible hypothesis of branching order

involving these groups has been proposed in the literature and many

have been supported by various data [53–55].

Gnetales: The position of Gnetales within a monophyletic gymnosperm clade
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is also unresolved, with various hypotheses recovered in the literature [56–

58].

Angiosperms: The earliest branch that diverged from the remaining flowing

plants (angiosperms) has been the subjective of debate. Amborella and

Nymphaeales (water lilies), have been identified as earliest branches of

the tree [59, 60]; however, it is not clear whether Amborella [60, 61] or

a clade containing Nymphaeales+Amborella [62, 63] should be placed as

sister to all other extant angiosperm lineages.

In its initial phase, the 1KP project gathered entire transcriptomes of

103 different plant species, and from those gathered a set of 852 single-copy pu-

tatively orthologous genes [4]. As part of the 1KP project, we estimated gene

trees on all 852 genes, and then analyzed them in various ways, including var-

ious ways of filtering data. An important filtering was to remove fragmentary

data from gene alignments. Fragments can reduce alignment accuracy [64],

and can also result in poorly estimated gene trees. After removing sequences

that were more than 66% gaps, and removing genes that were missing more

than 50% of the sequence data, we obtained a dataset that included 424 gene

trees (close to half of gene trees had less than half of the species and these were

removed). We estimated gene trees based on amino acid sequences and also

on DNA sequences with 3rd codon position removed (to avoid effects of GC

bias [4, 65]). We report results on these two sets of 424 gene trees, and refer

the reader to [4] for other analyses on the complete dataset. As mentioned
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in Section 5.1, our attempts at running MP-EST on this dataset had limited

success.

Figure 5.22 shows the ASTRAL tree on 1KP and summarizes the differ-

ences between CA-ML and ASTRAL trees. Both concatenation and ASTRAL

recover Zygnematales as sister to land plants, with high support. Similarly,

the sister to flowering plants is recovered to be Amborella with high support,

regardless of the dataset used or whether ASTRAL or CA-ML was used.

The relationships among Bryophytes and Gymnosperms are less con-

sistent. In all analyses, mosses and liverworts were sister groups. However,

in the CA-ML analysis of DNA sequences, hornworts were recovered with low

support as the sister to all remaining land plants (a clade containing mosses,

liverworts, and all the other land plants) whereas in both ASTRAL analyses

and the CA-ML analysis of the AA data, hornworts were sister to mosses +

liverworts, and this clade was at the base of land plants. The correct rela-

tionship is not known, but the fact that ASTRAL and concatenation recover

different relationships is important, especially given short branch lengths at

the base of land plants. Similarly, within Gymnosperms, the exact relation-

ships recovered depend on the method used. ASTRAL analyses both recover

Conifers as a monophyletic clade and Gnetales as the base of Gymnosperms,

a topology previously recovered in other analyses [66]. However, CA-ML anal-

yses put Gnetales as sister to pines, breaking the monophyly of Conifers (this

topology was also previously observed [56]).
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Figure 5.22: Summary of results of 1KP dataset. (a) ASTRAL results
on the 1KP dataset (ASTRAL-I and ASTRAL-II produced identical results);
the DNA tree is shown and the support values are shown for both DNA and
AA astral analyses. Branches without designation have 100% support in both
analyses. NA means a branch was missing from the AA analysis. (b) Summary
of results. Rows show hypotheses of plant evolution for four parts of the tree.
Columns show two ASTRAL and two CA-ML analyses (using RAxML). Colors
indicate whether a hypothesis was supported, or rejected and whether support
or rejection had support that was at least 75%.
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5.5.2.2 Land plant dataset

The question of greatest interest on this dataset is the sister group

to land plants. As noted before, our recent 1KP analysis recovered Zygne-

matales as sister to Land plants with high confidence using both ASTRAL

and concatenation. Zhong et al. used MP-EST to analyze their data, and in-

ferred Zygnematales as the sister with 64% BS [44]. A re-analysis of the same

data using STAR was performed by Springer and Gatesy [16], who obtained

Zygnematales + Coleochaetales with 44% BS.

We analyzed this dataset using ASTRAL-II and obtained a tree that

generally has high BS on most branches (i.e., with the exception of four

branches, all branches have support at least 86%, and most have 100% sup-

port). However, one edge had very low support (only 18%). After collapsing

the single branch with very low support, we obtained a tree (see Fig. 5.23)

in which the Charales + Land plants hypothesis is rejected with moderately

high support (86%); however, it is not determined whether Zygnematales,

Coleochaetales, or Zygnematales + Coleochaetales are the sister group to Land

plants (the branch that distinguishes between these three hypotheses is the one

with 18% support). Thus, ASTRAL’s analysis of this dataset can be seen as

suggesting that this dataset is insufficient to completely resolve the sister re-

lationship to Land plants. However, the most interesting question is whether

Charales are sister to Land plants, and the ASTRAL tree rejects that hypothe-

sis with 86% support. The ASTRAL results, therefore, are consistent between

the Zhong et al. dataset and 1KP dataset.
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Figure 5.23: ASTRAL tree on the Zhong et al. land plant dataset. We
analyzed a plant dataset with 32 species and 184 genes from [44]. Bootstrap
support values were obtained using the multi-locus bootstrapping procedure
with 100 replicates; values not shown indicate 100% support. ASTRAL-II
tree (with bootstrap support values) is shown on top, and we show a cartoon
version of the tree below. The cartoon version only shows the relationship
between the 5 groups – Land plants, Coleochaetales, Zygnematales, Charales,
and the outgroups, after collapsing the branch with bootstrap support of 18%.
Note that there are three possible sister groups to Land plants: Coleochaetales,
Zygnematales, or the two together (Zygnematales+Coleochaetales); however,
Charlaes is strongly rejected as the sister group to Land plants.
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5.5.2.3 Angiosperms

The evolution of angiosperms, and the placement of Amborella tri-

chopoda Baill., is one of the challenging questions in Land plant evolution.

One hypothesis recovered in some recent molecular studies and all of our 1KP

analyses is that Amborella trichopoda is sister to the rest of angiosperms, fol-

lowed by Nymphaeales (e.g., see [4, 67–69]). A competing hypothesis is that

Amborella is sister to Nymphaeales and this whole group is sister to other an-

giosperms [63, 69]. Xi et al. [45] have examined this question using a collection

of 310 genes sampled from 42 angiosperms and 4 outgroups. They observed

that concatenation using maximum likelihood (CA-ML) produced the first hy-

pothesis and MP-EST produced the second hypothesis, and they argued that

these differences are due to the fact that CA-ML does not model ILS, whereas

MP-EST does.

We ran MP-EST and ASTRAL on the gene tees that we re-estimated on

this dataset, and we obtained two different species trees (Fig. 5.24). Reproduc-

ing results by Xi et al., MP-EST recovered the sister relationship of Amborella

and Nymphaeales with 100% support. However, ASTRAL, just like CA-ML

(using RAxML), recovers Amborella as sister to other angiosperms, with 75%

support. While the exact position of Amborella is debated, our analysis shows

that the differences between CA-ML and MP-EST results cannot be simply

attributed to the fact that CA-ML does not consider ILS.

There are several possible reasons for the differences between the AS-

TRAL and MP-EST on this dataset, including the possibility that rooting
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Figure 5.24: Comparison of species trees computed on the angiosperm
dataset. MP-EST and ASTRAL-II differ in the placement of Amborella; the
concatenation tree agrees with ASTRAL-II.
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gene trees (required by MP-EST but not by ASTRAL-II) by Selaginella can

be problematic for some genes, or that the impact of the gene tree estimation

error is different for the two methods. We also note that ASTRAL-II is a non-

parametric method that does not estimate branch lengths, and it is possible

that non-parametric methods are less sensitive to gene tree estimation error

than parametric methods (like MP-EST).

Our reanalysis of this dataset and our results on the 1KP dataset taken

together point to more support for the hypothesis that Amborella is sister to

the remaining flowering plants.

5.5.2.4 Mammalian

On the mammalian dataset, two of the questions of greatest inter-

est were the placement of bats (Chiroptera) and tree shrew (Scandentia),

where their MP-EST analysis differed from the concatenated analyses they

performed. We recomputed the MP-EST tree, obtaining a tree topologically

identical to the MP-EST tree reported in [32], but with lower bootstrap for

the placement of Scandentia (62% in our analysis). CA-ML analyses of the

full and reduced datasets using RAxML were topologically identical and had

similar branch support. Thus, the CA-ML and MP-EST trees on the reduced

dataset still differed in the placement of both Scandentia and Chiroptera.

We compare ASTRAL to MP-EST in Figure 5.25. Both ASTRAL

and MP-EST trees placed Chiroptera as the sister to all other Laurasiatheria

except Eulipotyphyla, while CA-ML placed Chiroptera as the sister to Cetar-
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Figure 5.25: Analysis of the Song et al. mammals dataset using AS-
TRAL and MP-EST. We show the result of applying ASTRAL and MP-
EST to 424 gene trees on 37-taxon mammalian species. MP-EST is based on
rooted gene trees; ASTRAL is based on unrooted gene trees, and then rooted
at the branch leading to the outgroup. Branch support values in black are
for both methods, those in red are for ASTRAL, and values in blue are for
MP-EST.

tiodactyla. The ASTRAL tree placed Scandentia as sister to Glires with 74%

support, and thus agrees with the CA-ML tree but differs from the MP-EST

tree. Thus, the differences between CA-ML and MP-EST cannot simply be

attributed to use of a coalescent-based method, as Song et al. conjectured,

since ASTRAL, which is also coalescent-based, recovers the same relationship

as MP-EST.

5.5.2.5 Amniota dataset

Chiari et al. [46] assembled a dataset of Amniota to resolve the position

of turtles relative to birds and crocodiles. Most recent studies favor an Ar-
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chosaurus hypotheses that unites birds and crocodiles as sister groups [70]. The

MP-EST analyses by [46] resolved this relationship differently when AA and

DNA gene trees were used; thus, AA had 99% support for the Archosaurus

clade, but DNA rejected Archosaurus with 90% support. We analyzed the

same dataset using the exact version of ASTRAL and found that both AA

and DNA recover Archosaurus; however, while ASTRAL on AA gene trees

recovered Archosaurus with 100% support, ASTRAL on DNA gene trees had

only 55% support for Archosaurus.

5.6 Discussions and future work

This study introduced ASTRAL, a method for estimating species trees

from unrooted gene trees. We introduced two versions of ASTRAL, and proved

that both versions are statistically consistent under the MSC model, but our

second version, ASTRAL-II, has lowered running time and better empirical

performance. Our simulation and biological results show that upcoming multi-

gene datasets with large numbers of species can be accurately analyzed using

ASTRAL-II. For example, we are currently analyzing the next of 1KP dataset

that includes 400 genes, but more than 1,100 species.

Our biological analyses suggest that interestingly, some of the observed

discrepancies between existing coalescent-based analyses and concatenation

in previous studies [16] might be the result of the choice of coalescent-based

method. Therefore, improved coalescent-based analyses might not only help

to identify alternate relationships, but might also confirm prior hypotheses
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produced using concatenation.

An interesting observation was that in our simulations, concatenation

was under certain conditions more accurate than ASTRAL and other summary

methods. These results suggest that CA-ML should not be rejected, even

though it is not statistically consistent. Conversely, proofs of consistency of

standard summary methods assume gene trees estimated without error [71],

and this assumption limits the relevance of consistency results in practice.

Our analyses also highlighted a problem that we addressed in Chapter 4:

gene tree estimation error can affect the species tree, and that the accuracy

of summary methods is depended on the accuracy of gene trees. This results

in an interesting question: can the statistical binning approach also improve

the accuracy of ASTRAL? Our preliminary results suggest that the answer

is yes. We analyzed the avian simulated dataset presented in the previous

chapter and observed that 1) ASTRAL-II has better accuracy than MP-EST

on this dataset, and 2) binning used with ASTRAL-II further improved its

accuracy for many model conditions (see results in Fig. 5.26 and see [72] for

more). We also noted some interesting cases (e.g., the 1000bp model condition

in Fig. 5.26) where ASTRAL, unlike MP-EST, did not improve using binning,

but with or without binning ASTRAL had better accuracy than MP-EST.

Nevertheless, our results make it clear that the use of all summary methods,

including ASTRAL should be with the understanding that gene tree error

can impact their results, and that practitioners need to make an effort to

obtain the best gene trees possible using their data. The requirement to use
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(a) Avian (1X ILS; 1000 genes; varying gene sequene length)

(b) Mammalian (1X ILS, 500bp alignments; varying number of genes)

MP-EST ASTRAL

MP-EST ASTRAL

Figure 5.26: Impact of binning on ASTRAL. We compare weighted and
unweighted statistical binning when run using MP-EST or ASTRAL-II as the
summary method on simulated (a) avian and (b) mammalian datasets (S =
50% for avian and S = 75% for mammalian). ASTRAL, just like MP-EST, is
improved in terms of accuracy when used with binned supergene trees. Also
note that ASTRAL has lower error than MP-EST with or without binning,
except with the longest sequences.
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recombination-free regions complicates this pursuit as recombination-free “c-

genes” can be very short, especially as the number of taxa increases [73].

Future work is needed to study the impact of using shorter gene sequence

alignments, and conversely the presence of recombination events within genes.

Several limitations in ASTRAL need to be addressed in future work.

Comparison to other types of methods: While we compared ASTRAL

to simple summary methods, future studies need to compare ASTRAL-II to

boosting approaches (e.g., [5, 74]) that enable slower coalescent-based meth-

ods to scale to large datasets. Also, the running time of NJst and other sim-

ple distance-based methods that we didn’t analyze here (e.g., STAR [75] and

GLASS [76]) might be improved if better implementation of them is produced.

Finally, a comparison to co-estimation methods under conditions where those

methods can run (e.g., small numbers of species and genes) would also be

interesting.

Missing data: We presented algorithms for handling incomplete gene trees.

However, we have not rigorously studied the effect of incomplete gene trees

on the accuracy of ASTRAL. A more comprehensive study needs to test the

accuracy of ASTRAL in the presence of incomplete gene trees. These studies

would be most interesting if they also include cases where missing data are not

randomly distributed throughout the tree (e.g., basal taxa could be missing

more often). While the optimization problem of ASTRAL is likely sufficient
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even when there are missing taxa, whether our current construction of set X

from a set of incomplete genes is sufficient remains to be tested.

Multiple individuals: In studies where closely related species are analyzed,

it is believed that sampling more than one individual per species can help in

resolving the relationships [77, 78]. The optimization problem in ASTRAL can

be easily extended to cases where multiple individuals are sampled from each

species. Once again, computing the set X requires more care when multiple

individuals are present, and future algorithmic developments are needed to

obtain good accuracy on such datasets.

Further running time improvements: Further improvements to the run-

ning time of ASTRAL can be potentially obtained. For example, currently, in

our traversal of gene trees, we do not exploit similarities between gene trees. If

two gene trees are identical, we can traverse only one of them and simply count

the resulting score twice. Taking this idea one step further would allow us to

find commonalities between gene trees, and to exploit those commonalities to

reduce the computational burden.
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Appendix A

Commands

A.1 ASTRAL

A.1.1 ASTRAL-I analyses

A.1.1.1 Gene tree estimation

RAxML version 7.3.5 [79] was used to estimate gene trees. The follow-

ing command was used for estimating the best ML trees.

raxmlHPC-SSE3 -m GTRGAMMA -s [input file] -n [a name]

-N 20 -p [random seed number]

The following command was used for bootstrapping.

raxmlHPC-SSE3 -m GTRGAMMA -s [input file] -n [a name] -N 200

-p [random seed number] -b [random seed number]

A.1.1.2 ASTRAL

We ran version 3.1.1 of ASTRAL (corresponding to the github commit
fb21c0ce6140e9e238575356bc174c88c6cfc597 from March 6th on https://github.

com/smirarab/ASTRAL with the following command:

java -jar astra 3.1.1.jar -wq -in [input tree]

Where the exact version of ASRAL was used, we ran it with the following command:

java -jar astra 3.1.1.jar -wq -in [input tree] -xt

To add new bipartitions to X, we used it with the following command:
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java -jar astra 3.1.1.jar -wq -in [input tree] -ex [extra trees]

A.1.1.3 BUCKy-population

We ran BUCKy with the default settings, except for the number of genera-
tions that we changed from 100K to one million. The following command was used
to run BUCKy.

bucky -n <numberOfGenerations> -o <outputFileRoot> <inputFiles>

A.1.1.4 MRP and MRL

MRP trees are built using a custom Java program available at https://

github.com/smirarab/mrpmatrix. The following command was used to create the
MRP matrix.

java -jar mrp.jar [input file] [output file] NEXUS

We used the default heuristic in PAUP* (v. 4. 0b10) [80] for maximum
parsimony. This heuristic first generates an initial tree through random sequence
addition and then uses Tree Bisection and Reconnection (TBR) moves to reach a
local optimum. This process is repeated 1000 times, and the most parsimonious
tree is returned. When multiple trees have the same maximum parsimony score,
the greedy consensus of those trees is returned. The following shows the PAUP*
commands used.

begin paup;

set criterion=parsimony maxtrees=1000

increase=no;

hsearch start=stepwise addseq=random

nreps=100 swap=tbr;

filter best=yes;

savetrees file = <treeFile> replace=yes

format=altnex;

contree all/ strict=yes

treefile = <strictConsensusTreeFile>

replace=yes;

tcontree all/ majrule=yes strict=no

treefile = <majorityConsensusTreeFile>
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replace=yes;

contree all/ majrule=yes strict=no

le50=yes

treefile = <greedyConsensusTreeFile>

replace=yes;

log stop;

quit; end;

MRL stands for “Matrix Representation with Likelihood”, and is the su-
pertree method obtained by running two-state symmetric maximum likelihood on
the MRP matrix [11]. We computed maximum likelihood trees on the same MRP
matrix using RAxML under the two-state maximum likelihood model, to obtain
MRL (matrix representation with likelihood) trees.

A.1.1.5 Concatenation

We used RAxML version 7.3.5 to create the parsimony starting trees:

raxmlHPC-SSE3 -y -s supermatrix.phylip -m GTRGAMMA

-n [a name] -p [random seed number] -s [alignment]

We then used RAxML-light version 1.0.6 with the following command to
search for the ML tree.

raxmlLight-PTHREADS -T 4 -s supermatrix.phylip -m GTRGAMMA -n name

-t [parsimony tree] -s [alignment]

A.2 ASTRAL-II

A.2.1 SimPhy parameters

We used the following parameters in our simulation using SimPhy. The
scripts for the simulation are given at http://www.cs.utexas.edu/users/phylo/

software/astral/.

A.2.2 Indelible parameters

We used a perl script available also at http://www.cs.utexas.edu/users/
phylo/software/astral/ to draw parameters for the Indelible simulations. For
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Table A.1: Parameters used in SimPhy simulations.

Arg. Description Value Notes
RS number of replicates 50
RL number of loci 1000
RG number of genes 1 no duplications
ST maximum tree length 500K, 2M, or 10M
SI number of individuals per species 1
SL number of leaves 10,50,100,200,500, or 1000
SB birth rates 0.000001, 0.0000001
P global population sizes 200000
HS Species-specific Log normal (1.5,1)

branch rate heterogeneity modifiers
HL Locus-specific Log normal (1.2,1)

rate heterogeneity modifiers
HG Gene-tree-branch-specific Log normal (1.4,1)

rate heterogeneity modifiers
U Global substitution rate Exponential (10000000)
SO Outgroup branch length 1

relative to half the tree length
CS Random number generator seed 293745
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each replicate, some hyperparameters are first drawn and these hyperparameters
affect how the actual parameters are drawn for each gene in that replicate.

Gene Length: The alignments lengths are drawn from log normal distributions
for genes of each replicate. For each replicate, a hyperparameter controls the two
model parameters of the log normal distribution. The log mean is drawn uniformly
between 5.7 and 7.3, which correspond to 300 sites to 1500 sites. Thus, the average
alignment length for each replicate is a random value between 300 and 1500. The log
standard deviation for the log normal distribution is also drawn uniformly between
0.0 and 0.3.

Base frequencies: We used a Dirichlet(36,26,28,32) to draw the base frequen-
cies for A, C, G, and T. These values were calculated using maximum likelihood
estimation form a collection of three large scale multi-locus datasets: 1KP dataset,
Song et al Mammalian dataset, and Avian phylogenomics dataset. The base val-
ues used for this maximum likelihood estimation and the corresponding scripts are
available at http://www.cs.utexas.edu/~phylo/software/astral/.

Substitution matrices: As with base frequencies, GTR matrices were drawn
from a Dirichlet(16,3,5,5,6,15) and these parameters were also estimated using max-
imum likelihood from our empirical data.

Rates-across-sites shape parameter: α was drawn from an exponential dis-
tribution with rate 1.2, with values below 0.1 discarded. Like rates and base fre-
quencies, these values were estimated from real data.
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