
NGSCheckMate

Version 1.0

1. Introduction
NGSCheckMate is a software package for identifying next generation sequencing (NGS) data files from
the same individual. It analyzes various types of NGS data files including (but not limited to) whole
genome sequencing (WGS), whole exome sequencing (WES), RNA-seq, ChIP-seq, and targeted
sequencing of various depths. Data types can be mixed (e.g. WES and RNA-seq, or RNA-seq and ChIP-
seq). It takes BAM (reads aligned to the genome), VCF (variants) or FASTQ (unaligned reads) files as
input. NGSCheckMate uses depth-dependent correlation models of allele fractions of known single-
nucleotide polymorphisms (SNPs) to identify samples from the same individual. Our alignment-free
module is fast (e.g., less than one minute for RNA-seq using a single core) and we recommend it for a
quick initial quality check, before pooling / aligning sequenced reads. The BAM and VCF modules can
be used after the alignment and variant calling steps, respectively, to ensure correct sample annotation
before further downstream analysis. Currently, it works only for human data.

2. Requirement
1. Software environment

• Unix/Linux System
• Python 2.6 or above
• R 3.1 or above (required to generate a PDF of sample clustering dendrogram and a xgmml

graphical output for sample clustering; see Output and Supporting scripts)

For the BAM module (your input is in bam format), you need the following in addition.
• samtools (tested on version 0.1.19 and 1.3.1)
• bcftools 0.1.19 (a utility program included in samtools)

#	
 How	
 to	
 install	
 samtools	

#	
 For	
 example,	
 download	
 samtools	
 version	
 0.1.19	
 from	
 	

#	
 https://sourceforge.net/projects/samtools/files/samtools/0.1.19/	

tar	
 xvf	
 samtools-­‐0.1.19.tar.bz2	

cd	
 samtools-­‐0.1.19	
 	
 	

make	
 	

2. Additional files
For the BAM module,

• Human reference genome FASTA file (hg19 or GRCh37)

• A bed file (.bed) that lists the locations of selected SNPs (included in the package)

For the VCF module, (VCF and GVCF generated by samtools or GATK are supported)
• A bed file (.bed) that lists the locations of selected SNPs (included in the package)

For the FASTQ module,
• A binary pattern file (.pt) that lists the flanking sequences of selected SNPs (included in

the package)

3. Installation
1. Downloading NGSCheckMate

cd	
 <installation_dir>	

git	
 clone	
 https://github.com/parklab/NGSCheckMate.git	

##	
 set	
 NCM_HOME	
 according	
 to	
 you	
 shell	
 environment	
 	

##	
 for	
 example,	
 when	
 using	
 bash,	
 add	
 the	
 following	
 in	
 your	
 .bashrc	
 	

export	
 NCM_HOME=<installation_dir>/NGSCheckMate	
 	

2. Configuration (required only for the BAM module)
If your input is BAM/VCF files, add the following lines in your ncm.conf file in the package
directory. If your input is FASTQ files, you can skip this step.

REF=<path	
 for	
 the	
 reference	
 FASTA	
 file >	
 	
 	

SAMTOOLS=<path	
 for	
 samtools>	
 	

BCFTOOLS=<path	
 for	
 bcftools>	

3. Compilation of C codes
All the binary files are provided in the package, so in general there is no need to compile the source
codes and you can skip this step. In case you need to do so, use make to create the binary files.

ngscheckmate_fastq : the main C program of the FASTQ module

cd	
 ngscheckmate_fastq-­‐source	

make	

cp	
 ngscheckmate_fastq	
 ../	

patterngenerator : for creating your own pattern file for the FASTQ module)

cd	
 patterngenerator	

make

4. Usage
NGSCheckMate supports three types of input files: BAM, VCF and FASTQ. Each module is executed by
a Python script. You can also run the FASTQ module using a C program in addition to a Python script.

1. BAM/VCF mode
Usage: python ncm.py <-B | -V> <–d INPUT_DIR | -l INPUT_LIST_FILE> <-bed BED_FILE>

<–O OUTPUT_DIR> [options]

Required arguments
-B | -V A flag that indicates an input file type (B: BAM, V: VCF)
 Input bam files need to be sorted by coordinates and indexed.

-d DIR A directory that contains input files

 or

-l FILE A text file that lists input files and sample names (one per line; see Input file format)

-bed FILE A bed format file that lists the locations of selected SNPs (included in the package)

SNP/SNP_GRCh37_hg19_wChr.bed if your reference genome fasta file contains ‘chr’
in a chromosome name (e.g. ‘chr10’).

 SNP/SNP_GRCh37_hg19_woChr.bed otherwise.
 Either file works for the VCF mode.

-O DIR An output directory

Optional arguments
-N PREFIX A prefix of output files (default: output)

-f Use strict VAF correlation cutoffs. Recommended when your data may include related
 individuals (parents-child, siblings)
-nz Use the mean of non-zero depths across the SNPs as a reference depth

 (default: Use the mean depth across all the SNPs)

2. Speed up to analyze multiple large BAM files
You may need to analyze a large number of large BAM files. For example, you may want to identify
the proper pairing of 100 cancer WGS data with their matched blood WGS data sequenced at high
depth. In this case, it would take a long time to run NGSCheckMate on the set of BAM files, and we
recommend the following procedures.

STEP1: Generate a VCF file for each BAM file as follows. This step can be parallelized depending
on your computing system. For example, the LSF-based system can perform this step in parallel
using ‘bsub’ command.

#	
 an	
 example	
 for	
 generating	
 sample.vcf	
 from	
 sample.bam	
 mapped	
 to	
 hg19	

samtools	
 mpileup	
 –I	
 –uf	
 hg19.fasta	
 –l	
 SNP_GRCh37_hg19_woChr.bed	
 sample.bam	
 |	

bcftools	
 view	
 –cg	
 -­‐	
 >	
 sample.vcf	

STEP2: Run NGSCheckMate on the set of VCF files as input.

python	
 ncm.py	
 -­‐V	
 …	

3. FASTQ mode
Usage: python ncm_fastq.py <-l INPUT_LIST_FILE> <-pt PT_FILE> <–O OUTPUT_DIR> [options]

Required arguments
-l FILE A text file that lists input fastq (or fastq.gz) files and sample names (one per line; see

Input file format)

-pt FILE A binary pattern file (.pt) that lists flanking sequences of selected SNPs (included in
 the package; SNP/SNP.pt)

-O DIR An output directory

Optional arguments
-N PREFIX A prefix for output files (default: “output”)

-f Use strict VAF correlation cutoffs. Recommended when your data may include
 related individuals (parents-child, siblings)

-nz Use the mean of non-zero depths across the SNPs as a reference depth

 (default: Use the mean depth across all the SNPs)

-s FLOAT The read subsampling rate (default: 1.0)
 or
-d INT The target depth for read subsampling. NGSCheckMate calculates a subsampling

rate based on this target depth.

-R INT The length of the genomic region with read mapping (default: 3x10^9) used to

compute subsampling rate. If your data is NOT human WGS and you use the -d
option, it is highly recommended that you specify this value. For instance, if your data
is human RNA-seq, the genomic length with read mapping is ~3% of the human
genome (1x10^8).

-L INT The length of the flanking sequences of the SNPs (default: 21bp). It is not

recommended that you change this value unless you create your own pattern file (.pt)
with a different length. See Supporting Scripts for how to generate your own pattern
file.

-p INT The number of threads (default: 1)

4. FASTQ mode (alternative way)
A C program, ngscheckmate_fastq, can be directly called to generate a VAF file from one FASTQ file (single-
end sequencing) or two FASTQ files(paired-end sequencing). Then, another script, vaf_ncm.py is used to read
a set of VAF files to complete the downstream analysis. When you need to analyze many FASTQ files, the
first VAF file generation using ngscheckmate_fastq can be parallelized.

ngscheckmate_fastq

Usage: ngscheckmate_fastq <-1 FASTQ_FILE1> [-2 FASTQ_FILE2] <PT_FILE (.pt)> [options] >
 output.vaf

Required arguments

-1, --fastq1 FILE FASTQ file for single-end or the first FASTQ file for paired-end. File can be
gzipped (auto-detect).

PT_FILE A binary pattern file (.pt) that lists flanking sequences of selected SNPs

 (included in the package; SNP/SNP.pt)

Optional arguments
-2, --fastq2 FILE The second FASTQ file for paired-end. File can be gzipped (auto-detect)

-s, --ss FLOAT The read subsampling rate (default: 1.0)

or
-d, --depth INT The target depth for read subsampling. NGSCheckMate calculates a
 subsampling rate based on this target depth.

-R, --reference_length INT The length of the genomic region with read mapping (default: 3x10^9) to

compute a subsampling rate. If your data is NOT human WGS and you use the -d option, it is
highly recommended that you specify this value. For instance, if your data is human RNA-seq,
the genomic length with read mapping is ~3% of the human genome (1x10^8).

-L, --pattern_length INT The length of flanking sequences of SNPs (default: 21bp). It is

recommended not to change this value unless you create your own pattern file (.pt) with a
different length. see Supporting Scripts for how to generate your own pattern file.

-p, --maxthread INT The number of threads to use (default : 1)

vaf_ncm.py

Usage: python vaf_ncm.py -f -I <INPUT_DIR> -O <OUTPUT_DIR > <-N PREFIX>

-I DIR Input directory that contains the output VAF files of ngscheckmate_fastq

-O DIR Output directory

-N PREFIX Ouput file prefix

-nz Use the mean of non-zero depths across the SNPs as a reference depth

 (default: Use the mean depth across all the SNPs)

5. Input file list format

1. BAM/VCF mode
The input file that lists input BAM or VCF files (-l) needs to list one file name per line (single column).

 2. FASTQ mode

The input file that lists input FASTQ files (-l) should follow the format below.

Paired-end data
FASTQ_FILE1 (tab) FASTQ_FILE2 (tab) SAMPLE_NAME (\n)

Single-end data

 FASTQ_FILE1 (tab) SAMPLE_NAME (\n)

6. Examples
1. Test sample pairing using BAM input

python ncm.py -B -f -d /data/wgs_download/LUAD/ -O LUAD_WGS/ -N LUAD -bed
SNP/SNP_GRCh37_hg19_woChr.bed

2. Test sample pairing using VCF input
python ncm.py -V -f -d /data/wgs_download/LUAD/ -O LUAD_WGS/ -N LUAD -bed
SNP/SNP_GRCh37_hg19_woChr.bed

3. Test sample pairing using FASTQ input
python ncm_fastq.py -l fastq_list.txt -O output -N ChIP_batch -p 4 -pt SNP/SNP.pt

7. Output
1. PREFIX_all.txt
This output file lists both matched and unmatched sample pairs with VAF correlation coefficients and
representative sequencing depths.

Format

 Sample1 (tab) matched/unmatched (tab) Sample2 (tab) Correlation (tab) Depth

6216-01A matched 6216-10A 0.7957 4.9
6216-01A unmatched 6324-10A 0.2153 15

2. PREFIX_matched.txt
This output file lists sample pairs that were predicted to be matched based on our depth-dependent VAF
correlation model.

Format

 Sample1 (tab) matched_or_unmatched (tab) Sample2 (tab) Correlation (tab) Depth

6216-01A unmatched 6216-10A 0.7957 4.9

3. PREFIX.pdf
This pdf file shows a dendrogram image of hierarchical clustering of samples based on VAF correlation
coefficients.

8. Supporting scripts
1. Patterngenerator
The set of scripts in the patterngenerator folder in the package generate the .pt file used by the FSTQ module,
in cases when the user wants to generate a custom .pt file. It requires a bed file containing a set of SNP
positions, a genome reference file (both FASTA and bowtie 1 index) and the bowtie alignment program
(http://bowtie-bio.sourceforge.net/index.shtml).

Usage:	
 makesnvpattern.pl	
 bedfile	
 genomefasta	
 genome(bowtie)index	
 outdir	

outprefix	

2. Graph generator (Rscript)
This script with a set of xgmml templates is used for generating a graph representing matching files as
connected nodes. The output format is in .xgmml, which can be read by Cytoscape.

source("graph/ngscheckmate2xgmml.R")	

create.xgmml.from.ngscheckmateout(label.file,ngscheckmateoutput.file,output.x
gmml)	

Label file: a tab-delimited text file containing a BAM file name (1st column), an individual identifier (2nd
column) and optionally, a file identifier (3rd column) for each line. An individual identifier must be unique to a
subject (e.g. both tumor and normal samples from the same individual must have the same individual identifier).
A file identifier must be unique to a file name.

ngscheckmateoutput.file: the output text file of NGSCheckMate. It is a tab-delimited text file containing two
BAM file names (1st and 2nd columns), VAF correlation (3rd column) and average depth (4th column). It may
contain either all pairs or matched pairs, depending on the option used to run NGSCheckMate. Both options
may be used to run this program.

Sample label file (sample.label.txt) and ngscheckmateouput.file (sample.input.txt) can be found in the
subdirectory graph/.

