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1 Installation & example data

The latest stable version of SLOUCH can be installed from the CRAN (Comprehensive R Archive
Network) by entering:

install.packages("slouch")

The phylogenetic trees used in SLOUCH are encoded as an object of class phylo. Consult the package
APE (Analysis of Phylogenetics and Evolution, Paradis et al. 2004) for the base functionality, and auxillary
packages such as treeio and ggtree (Yu et al. 2016) for more modern and extensive functionality for
importing, exporting or plotting phylogenetic trees in various formats. For the purposes of illustrating
the software, we will use a dataset of ruminant neocortices bundled with the package and a corresponding
phylogenetic tree (Toljagi¢ et al. 2017). First, we will organize the neocortex data and associated
annotation data.

# Load mecessary packages
library (ape)
library(slouch)

## Load the phylogenetic tree with annotation data
data(artiodactyla)
phy <- artiodactyla

## Load the neocortex dataset
data(neocortex)

## Plot the tree
plot(ladderize(phy), cex = 0.6)
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Now, we have a phylogenetic tree with corresponding morphological data for the extant species. If you
use your own data to fit models, it is recommended to store the data for the terminal branches in a data
frame or in a similar data structure. In order to line up the data frame with the tree, SLOUCH requires
the species in the data frame need to be in a particular order.

## Check whether they are lined up correctly

neocortex$species == phy$tip.label

## [1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
## [12] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE



## [23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Unsurprisingly, not all of the species are in their correct places; we will have to reorder the data frame.
Here is one way to do it.

neocortex <- neocortex[match(phy$tip.label, neocortex$species), ]

## Check if they line up again

neocortex$species == phy$tip.label

## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [15] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [29] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [43] TRUE

The neocortex dataset includes neocortex area, brain mass and body mass in ruminants, primarily bovids.
It also includes some ecological information such as the type of habitat (open, closed) or mode of diet
(grazer, browser), see Tneocortex for further reference.



2 Phylogenetic effect

The idea here is to test whether the phylogenetic relationships have an influence on the distribution of
a single variable. Most phylogenetic comparative methods will begin with this step. It is important
to realize, however, that phylogenetic effects are not necessarily the same thing as phylogenetic inertia.
A variable can be seen to have quite strong phylogenetic effects but such a pattern can easily come
about if that variable is evolving towards optima associated with niches that themselves exhibit strong
phylogenetic effects. Phylogenetic inertia needs to be measured from the residuals of a model that includes
predictor variables that may or may not themselves be phylogenetically structured. First, we plot the
neocortex-brain allometry:

braincentered <- neocortex$brain_mass_g_log_mean - mean(neocortex$brain_mass_g_log_mean)
plot(x = braincentered,
y = neocortex$neocortex_area_mm2_log_mean,

xlab = "Mean log brain mass (g)",
ylab = "Mean log neocortex area (mm2)")
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Figure 1: Scatter plot of mean log neocortex area (mm?) on mean log brain mass (g).

The way to test for an overall phylogenetic effect in the SLOUCH program is to fit an intercept-only or
grand mean model. The program will estimate the phylogenetic half-life ¢, /5 (1,2 = log(2)/«), and the
stationary variance v, (= o, /2a), using likelihood, and the intercept (by) using generalized least squares.
For now we will use the numerical optimizer (the default setting):

model0 <- slouch.fit(phy = phy,
species = neocortex$species,
response = neocortex$neocortex_area_mm2_log_mean)

A minimal overview of modelO can be generated by typing print(model0). The output should be
observed with caution until we trust that the hillclimber has converged at a global maximum, or by using
a fine-grained grid search to accurately estimate ¢, /5 and v,.

print (modelO)

## Response: neocortex$neocortex_area_mm2_log_mean
##

## AICc Support R squared

## 7.055e+01 -3.197e+01 -1.652e-16



##

## ML estimates(s):

## Phylogenetic half-life: 334310.1706
## Stationary variance: 5486.6078

##

##  Coefficients:

## (Intercept)

#i# 9.759

By entering summary (modelO) we get a more detailed summary of the model output. It displays the best
estimates of all the parameters where support for the regression parameters are given as standard errors,
and log-likelihood values as well as various information criteria for the best estimate model-fit.

summary (model0)

## Important - Always inspect the likelihood surface of the model parameters with
H# grid search before evaluating model fit & results.

#i#

## Maximum-likelihood estimates

## Estimate

## Phylogenetic half-life 334310.2

## Stationary variance 5486.608

##

##

## Inferred maximum-likelihood parameters

#it Value

## Mean phylogenetic correction factor 2.818679e-05
## Rate of adaptation 2.073366e-06
## Diffusion variance 0.02275149
##

##

## Intercepts

## Estimates Std. error

## (Intercept) 9.759027 0.3679654

##

##

## Model fit summary

## Values

## Support -3.20e+01

## AIC 6.99e+01

## AICc 7.05e+01

## SIC 7.52e+01

## R squared -1.65e-16

## SST 4.30e+01

## SSE 4.30e+01

## N (params) 3.00e+00

2.1 Interpreting the parameters

The phylogenetic half-life parameter (¢, = log(2)/a) measures the influence of the ancestral state of the
variable in question relative to the tendency to evolve towards the common ancestral state (the intercept).
Conversely, a measures the rate of adaptation. If the best estimate of ¢, /5 is 0, the ancestral state does
not influence the current state of the variable. The larger ¢,/ gets, the more influence the past state
of the variable has on its current state (i.e. the trait‘s evolution approaches a Brownian motion as t; /2
approaches infinity). The units of the phylogenetic half-lives are the same units as the branch lengths in
the phylogenetic tree, phy$edge.length. The total depth, or distance from the root, can for all nodes be
calculated with node.depth.edgelength(phy). For this phylogenetic tree the maximum tree depth is
about 27 million years.



3 Adding predictors and testing for phylogenetic inertia

3.1 Continuous random predictor

The parameters we estimate for the models that have a single random predictor variable are: 2,5, o2,
vy, and the regression parameters b;. Recall that the regression parameters b; can be given in one of
two ways, as an evolutionary regression or as an optimal regression where the latter is “corrected” by
the phylogenetic correction factor. The predictor variance, 02, is estimated a priori by SLOUCH. The
estimation procedure itself is performed in a similar manner as for the intercept-only models above. For
example, if we wanted to perform a regression of log neocortex size (mm?) on log brain mass (g), we

would enter:

model3 <- slouch.fit(phy = phy,
species = neocortex$species,
response = neocortex$neocortex_area_mm2_log_mean,
random.cov = braincentered)

model3

## Response: neocortex$neocortex_area_mm2_log_mean
#

## AICc  Support R squared

## -14.5016 11.7771 0.9145

#

## ML estimates(s):

## Phylogenetic half-life: 2.5219
## Stationary variance: O

##

##  Coefficients:

##  (Intercept) braincentered

## 9.668 0.989

3.1.1 Measurement variance in the ruminant neocortex example:

Comparative analyses based on species averages should consider the estimation error in these averages
as measurement error. This is particularly pressing in fields such as evolutionary physiology, where the
measurements of individual organisms may be laborious and expensive. Obtaining many measurements
from many individuals from many species is difficult, and one often ends up with sample sizes that are
small and uneven across species. In such a situation the variance attributable to measurement error can
be a substantial fraction of the total, and one wants to weigh the species data according to their reliability.
It is also possible that measurement variance may generate a downward bias in estimates of phylogenetic
effects, because it makes species appear less statistically correlated than they are in reality. As discussed
above, SLOUCH can incorporate measurement variance in both response and predictor variables.

For the neocortex data, estimates of measurement variance can be obtained as the square of the standard
error of the species means. There is, however, a practical difficulty in that small sample sizes also
makes for unreliable estimates of the measurement variance; the standard error of a species average
obtained from a handful of individuals is so inaccurate as to be worthless. We therefore adopted the
procedure of assuming that the within-species variance of each variable was the same for all species. The
within-species variance estimated average of the sample variances of each variable was estimated as a
sample-size-weighted average of the sample variances of each species; i.e. as

2 _ i Omi(ni — 1)
b >i(ni—1)

where o2 is the sample variance of species 4, and n; is the sample size of species 7. In this way, the larger
sample sizes are weighted more. We then estimated the measurement variance of each species as o2 /n;.
See Grabowski et al. (2016) for further discussion. In order to incorporate measurement variance in the
model, would enter:



model3 <- slouch.fit(phy = phy,
species = neocortex$species,
response = neocortex$neocortex_area_mm2_log_mean,
mv.response = neocortex$neocortex_se_squared,
random.cov = braincentered,
mv.random.cov = neocortex$brain_se_squared)

plot(x = braincentered,
y = neocortex$neocortex_area_mm2_log_mean,
xlab = "Mean log brain mass (g)",
ylab = "Mean log neocortex area (mm2)")
abline(model3$beta_evolutionary$coefficients_bias_corr[,1],
col = "black", lwd = 2)
abline(model3$beta_primary$coefficients_bias_corr[,1],
col = "orange", lwd = 2)
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Figure 2: The evolutionary (black) and optimal (orange) regression lines for the model of mean log
neocortex area (mm?) on mean log brain mass (g), both corrected for bias due to measurement error in

mean log brain mass.

While the single-optimum model showed a strong phylogenetic signal, this model exhibits much less
phylogenetic inertia, with best estimate of the phylogenetic half-life (¢, /o) being 1 myr. Here, the optimal
regression is steeper than the evolutionary regression. It is also possible to fit a model with multiple
continuous covariates, however the input to random.cov must be a matrix or data frame that has column
names, and the observational error passed to mv.random.cov must be a matrix or data frame of the same

shape as random. cov.

bodycentered <- neocortex$body_mass_g_log_mean - mean(neocortex$body_mass_g_log_mean)

model4d <-
slouch.fit(phy = phy,
species = neocortex$species,
response = neocortex$neocortex_area_mm2_log_mean,
mv.response = neocortex$neocortex_se_squared,
random.cov = cbind(braincentered,
bodycentered),
mv.random.cov = cbind(neocortex$brain_se_squared,



neocortex$body_se_squared))

model4

## Response: neocortex$neocortex_area_mm2_log_mean
##

## AICc  Support R squared

## -12.8539 12.2378 0.9276

#

## ML estimates(s):

## Phylogenetic half-life: 0.6684

## Stationary variance: 1e-04

##

##  Coefficients:

##  (Intercept) braincentered bodycentered
#it 9.66763 0.79429 0.06392

3.2 Estimating the intercept

The slouch.fit function will on default estimate the intercept k. If the phylogenetic tree is non-
ultrametric, for example due to the inclusion of extinct species, it is possible to estimate the components
of k. Recall that, when y is evolving according to an Ornstein-Uhlenbeck process in response to one or
more predictors x evolving as Brownian motions, the intercept k is

E=e My, +(1—e by + (1 — e — plat))(b12q1 + baTaa +...)

SLOUCH can independently estimate y,, bg and the sum bz, = (b1xa1 + boxgo + ...). Using the same
example with neocortex evolving in response to brain size, we would specify:

model5 <- slouch.fit(phy = phy,
species = neocortex$species,
response = neocortex$neocortex_area_mm2_log_mean,
mv.response = neocortex$neocortex_se_squared,
random.cov = braincentered,
mv.random.cov = neocortex$brain_se_squared,
estimate.Ya = TRUE,
estimate.bXa = TRUE)

The parameters y, and bx, represent the ancestral states for y and = separate from the regression intercept
bo. Since this phylogenetic tree is ultrametric, we cannot recover independent estimates of these. If
we would try to execute the above code, we would not be able to estimate the GLS coefficients since
the model matrix becomes singular. Even if we had a non-ultrametric tree, the intercept components
are often estimated with extremely low power, so it can make sense to estimate them as a combined
intercept term. This is done by default, or by specifying slouch.fit(..., estimate.Ya = FALSE,
estimate.bXa = FALSE) in the function call. The phylogenetic residual covariance matrix will always
be computed based on the phylogenetic tree, whether it is ultrametric or not. In some cases (for example,
when inertia is small), estimating the components of k will not work (due mainly to numerical issues
because of unstable coefficient and parameter combinations in the intercept terms and non-convergence
of regression parameters). Also note that, in the non-ultrametric case, each species theoretically has its
own optimal intercept (by), however the reported estimate is actually an average of these. Its primary
purpose is to allow us to plot a regression line.

3.3 Multiple optima & phylo-format

SLOUCH can fit models with multiple adaptive regimes or niches over the branches of the phylogenetic
tree. We will fit neocortex size as a function of diet in ruminants. Trees in the phylo format are
represented by the edges found in phy$edge, where each edge connects two vertices or nodes. All of



the tip nodes have indices starting from 1, 2, 3 ... until nyps, in this case 43. The root node has
index nyps+1, here 44, and the rest of the internal nodes have indices (n4ips+2, Ntips+3, - - -, Mnodes)-
When running this type of model, we will need to specify the internal adaptive regimes in the order
of node indices (ngips+1, Ntips+2, Neips+3, - .-, Nnodes). The regimes for the tips must be supplied to
the fixed.fact argument (slouch.fit(..., fixed.fact = neocortex$diet)), and the regimes for
the internal nodes must be assigned to phy$node.label. In order to plot and visually verify that the
ancestral state configuration is sensible, we need to have all the regimes in the order of the edges, not
the nodes.

## Inspect the internal node regimes
## These have order n+1, nt+2, n+3
internal_regimes <- factor(phy$node.label)

## Concatenate tip and internal regimes. These will have order 1,2,3
regimes <- c(neocortex$diet, internal_regimes)

## Pick out the regimes of the edges, in the order of phy$edge
edge_regimes <- factor(regimes[phy$edgel,2]1])

plot(phy,
edge.color = c("Black", "Orange", "blue") [edge_regimes],
edge.width = 3, cex = 0.6)
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If it looks like there are no visible mistakes, we can go ahead and fit the model in SLOUCH.

model6 <- slouch.fit(phy = phy,
species = neocortex$species,
response = neocortex$neocortex_area_mm2_log_mean,
direct.cov = neocortex$brain_mass_g_log_mean,
fixed.fact = neocortex$diet)

model6
## Response: neocortex$neocortex_area_mm2_log_mean



##

## AICc  Support R squared
## -16.1789  15.2561 0.9104
##

## ML estimates(s):
## Phylogenetic half-life: 8.5282
## Stationary variance: 0.0357

#

## Coefficients:

## Br Gr
## 5.3747 5.6045
## MF neocortex$brain_mass_g_log_mean
# 5.5559 0.8204

3.4 Direct effect predictors

SLOUCH can also fit models with continuous covariates that don’t have any phylogenetic covariance
structure, variables that influence the optimum directly and immediately.

model7 <- slouch.fit(phy = phy,
species = neocortex$species,
response = neocortex$neocortex_area_mm2_log_mean,
mv.response = neocortex$neocortex_se_squared,
direct.cov = neocortex$brain_mass_g_log_mean,
mv.direct.cov = neocortex$brain_se_squared)

model7

## Response: neocortex$neocortex_area_mm2_log_mean
#t

## AICc  Support R squared

## -20.0123 14.5325 0.8994

#

## ML estimates(s):
## Phylogenetic half-life: 106.3322
## Stationary variance: 0.1483

##

## Coefficients:

#it (Intercept) neocortex$brain_mass_g_log_mean
## 5.4053 0.8463

4 Brownian motion

4.1 Univariate, zero-trend

The brown.fit () function can fit the same kinds of models that slouch.fit () does, except under a
Brownian motion model of evolution.

2 1

which in this example has units (log(neocortex(mm?)))? x myr~!.

The parameters v, = 0,2/ /2a and t; /5 no longer enter the equation. The intercept-only model can be

fitted by entering the following:

model8 <- brown.fit(phy = phy,
species = neocortex$species,
response = neocortex$neocortex_area_mm2_log_mean,
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mv.response = neocortex$neocortex_se_squared)

model8

## Response: neocortex$neocortex_area_mm2_log_mean
##

## AICc Support R squared

## 6.845e+01 -3.208e+01 -3.322e-16

##

## ML estimates(s):

## Diffusion variance: 0.0225

##

## Coefficients:
## (Intercept)
## 9.758

4.2 Regime-dependent trends
We will fit log neocortex area with different trends for each dietary regime:

model9 <- brown.fit(phy = phy,
species = neocortex$species,
response = neocortex$neocortex_area_mm2_log_mean,
mv.response = neocortex$neocortex_se_squared,
fixed.fact = neocortex$diet)

model9

## Response: neocortex$neocortex_area_mm2_log_mean
##

## AICc  Support R squared
## 67.2892 -29.1183 0.1292
##

## ML estimates(s):

## Diffusion variance: 0.0196

##

## Coefficients:

## Br Gr MF

## 0.3418 0.4079 0.3647

In this example, the trends (7) are in units of log neocortex(mm?) x myr—!. Since with this procedure
we assume that y, = 0, we can only interpret the relative differences among the trends. By looking at the
pairwise contrasts, we can see that the expected increase in neocortex for grazers is slightly larger than

for browsers and mixed feeders.

model9$beta_primary$trend_diff

#i# Contrast Std. error
## Gr - Br 0.06610920 0.02665333
## MF - Br 0.02296778 0.01602782
## MF - Gr -0.04314142 0.02478017

4.3 Trend as a linear function

We can also fit a model where the trend is expressed as a linear function of another variable (7 = a + bz).

To fit such a model of log neocortex area on log brain mass, we would enter:

modell0 <- brown.fit(phy = phy,
species = neocortex$species,
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response = neocortex$neocortex_area_mm2_log_mean,
mv.response = neocortex$neocortex_se_squared,
random.cov = braincentered,

mv.random.cov = neocortex$brain_se_squared)

modell0

## Response: neocortex$neocortex_area_mm2_log_mean
##

## AICc  Support R squared

## 4.3028 1.1563 0.9161

##

## ML estimates(s):

## Diffusion variance: 0

##

##  Coefficients:
##  (Intercept) braincentered
## 9.70542 0.06404

Note that even though we model the trend in neocortex size as a function of brain size, there is no
information of any net change per time, as we assume that y, = 0. Thus, we interpret the model either
as being zero-“net trend” or being agnostic of the direction of change per time. If we want to get the
predictions for this model, we get

Y =Yg +a+ pbzx.

Substituting y, = 0, a = 9.71, p = 27.2myr/2, b = 0.064myr !, we get the observed allometric relationship
between neocortex size (y) and brain size (z):

y=9.71 + 0.87z.

Slouch also computes the observed relationship automatically:

modell0$beta_evolutionary$coefficients
## Predictions Std. error
## (Intercept) 9.7054225 0.24648634
## braincentered 0.8706238 0.07519513

12



5 Measurement error and bias-correction

6 Grid search

Previously we used the numerical optimizer to find maximum-likelihood estimates of 1,5 and v,. This
technique uses the method “L-BFGS-B” in the optim(...) function to estimate parameters in the OU
model, and method “Brent” when « is constrained to zero and the model is reduced to a Brownian motion.
On default it will start on a random combination of ; /, and 02/ 2a, but this may also be specified. While
the hillclimber is fast and may seem accurate at first glance, there are some drawbacks. If the likelihood
search space has one or more local maxima, the hillclimber may converge at a sub-optimal location and
give parameter estimates that are not truly maximum-likelihood estimates. Additionally, even though the
hillclimber may converge at some local or global maximum, it will not indicate whether the support region
of the parameters is narrow or wide. Another problem when using the hillclimber is that, depending
on the specified model, the residual variance-covariance matrix V may collapse if 05 /2 reaches zero.
The immediate consequence is that matrix is non-invertible, and the program will return an error. If
within-species observational error is non-zero and added to the model, this does not happen. In order to
use the hillclimber, it may be necessary to constrain its search space such that 05 /2a does not enter zero
or close to zero. The exact feasible boundary for this may depend on the scale of the response trait.

The alternative is to use a grid search where we provide vectors of potential values for each parameter to
the program to find the combination that maximizes the likelihood. One way to find the best parameters
is to start with a rough grid (i.e. values of ¢, /5 and v, incremented by large integer numbers) and then to
“home in” on the best supported region with finer scaled grids. Some caution and “trial and error” need
to be exercised here as it is possible to miss the support region entirely if the grid values are too widely
spaced. There are several ways to create a vector of values in R for this purpose:

## The manual way
h <- c(0.01, 0.1, 1, 5, 10, 15, 20, 100)
vy <- h

## Using the seq function
h <- seq(from = 0.001, to = 100, length.out = 15)
vy <- seq(from = 0.001, to = 5, length.out = 15)

## Using a seq function with logarithmically spaced steps
h <- lseq(from = 0.001, to = 100, length.out = 15)
vy <- lseq(from = 0.001, to = 5, length.out = 15)

Using the default values of the model fitting function slouch.fit, we use an initial grid search to find
the maximum likelihood estimates of ¢; 5 and vy in a single-optimum model, and change the grid location
depending on how the surface looks. When using grid search, it may be easier to explicitly disable the
hillclimber technique, i.e. slouch.fit(... hillclimb = FALSE).

model_grid_0 <- slouch.fit(phy = phy,
hl_values = seq(0.001, 12, length.out = 20),
vy_values = seq(0.1, 1, length.out = 20),
species = neocortex$species,
response = neocortex$neocortex_area_mm2_log_mean,
hillclimb = FALSE)

plot(model_grid_0)
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Grid search

Figure 3: Three-dimensional joint support region for the estimates of half-lives and stationary variances,
for the single-optimum model.

The vertical axis in Figure (...) represents the log-likelihood standardized so that the maximum log-
likelihood equals 0. The two horizontal axes are the vector of hl_values and vy_values that we defined
in the function arguments. The peak that rises out of the flat surface therefore, represents the specific
combination of hl_values and vy_values that are more than two support units below the best estimate.
The flat surface itself represents parameter values falling outside the 2-unit support region (as defined
by Edwards 1992). If the user prefers to plot an m-unit support region, a support value of m can be
specified in slouch.fit by supplying the argument slouch.fit(... ,support = m).

model_grid_1 <- slouch.fit(phy = phy,
hl_values = seq(0.001, 150, length.out = 20),
vy_values = seq(0.1, 2.5, length.out = 20),
species = neocortex$species,
response = neocortex$neocortex_area_mm2_log_mean,
hillclimb = FALSE)

plot(model_grid_1)
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Figure 4: Another slice of the log likelihood surface for the same single-optimum model
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The plots of the likelihood surfaces are both based on the same data, but with different grid location
and resolution. This graphical output is useful for finding and refining the support region where the aim
would be to identify the upper and lower 2-unit marginal support regions for ¢ /5 and v,. Note that the
support region is relative to the best estimate among the parameters evaluated in the entire parameter
search (including parameters evaluated with the hillclimber). Thus it is essential to include the best
estimate when calculating the support set. The optima and model fit statistics that are reported in the
summary are conditional on the combination of these t;,, and v, that give the highest log-likelihood;
in this case the peak of the surface in the likelihood plot. If the grid-search does not contain the true
maximum likelihood, the model outputs will reflect this. It is also possible to use other packages to plot
the grid-search likelihood surface, for a more aesthetic look (not run).

library(plotly)
p <~ plot_ly(x = modelO$supportplot$hl,
y = modelO$supportplotévy,
z = modelO$supportplot$z) %>%

add_surface() %>%
layout(title = "Grid-search",
scene = list(xaxis = list(title
yaxis = list(title
zaxis = list(title

"Phylogenetic half-life"),
"Stationary variance"),
"Log-likelihood")))
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