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1. Introduction

This paper demonstrates the use of aomart class. It is based on testmath.tex

from AMS-LATEX distribution. The text is (slightly) reformatted according to

the requirements of the aomart style. See also [12], [22], [17], [1], [16], [15],

[24], [23], and [6].Are these
quotations
necessary?

It is always a pleasure to cite Knuth [9].

2. Enumeration of Hamiltonian paths in a graph

Let A = (aij) be the adjacency matrix of graph G. The corresponding

Kirchhoff matrix K = (kij) is obtained from A by replacing in −A each

diagonal entry by the degree of its corresponding vertex; i.e., the ith diagonal

entry is identified with the degree of the ith vertex. It is well known that

(1) detK(i|i) = the number of spanning trees of G, i = 1, . . . , n

where K(i|i) is the ith principal submatrix of K.

\det\mathbf{K}(i|i)=\text{ the number of spanning trees of $G$},

Let Ci(j) be the set of graphs obtained from G by attaching edge (vivj)

to each spanning tree of G. Denote by Ci =
⋃

j Ci(j). It is obvious that the

collection of Hamiltonian cycles is a subset of Ci. Note that the cardinality of

Ci is kii detK(i|i). Let “X = {x̂1, . . . , x̂n}.
$\wh X=\{\hat x_1,\dots,\hat x_n\}$

Define multiplication for the elements of “X by

(2) x̂ix̂j = x̂j x̂i, x̂2i = 0, i, j = 1, . . . , n.

Proof: page numbers may be temporary
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Let k̂ij = kij x̂j and k̂ij = −
∑

j ̸=i k̂ij . Then the number of Hamiltonian cycles

Hc is given by the relation [13]

(3)

Å n∏
j=1

x̂j

ã
Hc =

1

2
k̂ij det“K(i|i), i = 1, . . . , n.

The task here is to express (3) in a form free of any x̂i, i = 1, . . . , n. The result

also leads to the resolution of enumeration of Hamiltonian paths in a graph.

It is well known that the enumeration of Hamiltonian cycles and paths

in a complete graph Kn and in a complete bipartite graph Kn1n2 can only

be found from first combinatorial principles [7]. One wonders if there exists a

formula which can be used very efficiently to produce Kn and Kn1n2 . Recently,

using Lagrangian methods, Goulden and Jackson have shown that Hc can be

expressed in terms of the determinant and permanent of the adjacency matrix

[5]. However, the formula of Goulden and Jackson determines neither Kn nor

Kn1n2 effectively. In this paper, using an algebraic method, we parametrize

the adjacency matrix. The resulting formula also involves the determinant

and permanent, but it can easily be applied to Kn and Kn1n2 . In addition,

we eliminate the permanent from Hc and show that Hc can be represented by

a determinantal function of multivariables, each variable with domain {0, 1}.
Furthermore, we show that Hc can be written by number of spanning trees of

subgraphs. Finally, we apply the formulas to a complete multigraph Kn1...np .

The conditions aij = aji, i, j = 1, . . . , n, are not required in this paper.

All formulas can be extended to a digraph simply by multiplying Hc by 2.

Some other discussion can be found in [4] and [3].

3. Main theorem

Notation. For p, q ∈ P and n ∈ ω we write (q, n) ≤ (p, n) if q ≤ p and

Aq,n = Ap,n.

\begin{notation} For $p,q\in P$ and $n\in\omega$

...

\end{notation}

Let B = (bij) be an n×n matrix. Let n = {1, . . . , n}. Using the properties
of (2), it is readily seen that

Lemma 3.1.

(4)
∏
i∈n

Å∑
j∈n

bij x̂i

ã
=

Å∏
i∈n

x̂i

ã
perB

where perB is the permanent of B.

Proof: page numbers may be temporary
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Let “Y = {ŷ1, . . . , ŷn}. Define multiplication for the elements of “Y by

(5) ŷiŷj + ŷj ŷi = 0, i, j = 1, . . . , n.

Then, it follows that

Lemma 3.2.

(6)
∏
i∈n

Å∑
j∈n

bij ŷj

ã
=

Å∏
i∈n

ŷi

ã
detB.

Note that all basic properties of determinants are direct consequences of

Lemma 3.2. Write

(7)
∑
j∈n

bij ŷj =
∑
j∈n

b
(λ)
ij ŷj + (bii − λi)ŷiŷ

where

(8) b
(λ)
ii = λi, b

(λ)
ij = bij , i ̸= j.

Let B(λ) = (b
(λ)
ij ). By (6) and (7), it is straightforward to show the following

result:

Theorem 3.3.

(9) detB =
n∑

l=0

∑
Il⊆n

∏
i∈Il

(bii − λi) detB(λ)(Il|Il),

where Il = {i1, . . . , il} and B(λ)(Il|Il) is the principal submatrix (obtained from

B(λ) by deleting its i1, . . . , il rows and columns).

Remark 3.1 (convention). Let M be an n × n matrix. The convention

M(n|n) = 1 has been used in (9) and hereafter.

Before proceeding with our discussion, we pause to note that Theorem 3.3

yields immediately a fundamental formula which can be used to compute the

coefficients of a characteristic polynomial [14]:

Corollary 3.4. Write det(B− xI) =
∑n

l=0(−1)lblxl. Then

(10) bl =
∑
Il⊆n

detB(Il|Il).

Let

(11) K(t, t1, . . . , tn) =

Ü
D1t −a12t2 . . . −a1ntn
−a21t1 D2t . . . −a2ntn
. . . . . . . . . . . . . . . . . . . . . .

−an1t1 −an2t2 . . . Dnt

ê
,

Proof: page numbers may be temporary
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\begin{pmatrix} D_1t&-a_{12}t_2&\dots&-a_{1n}t_n\\

-a_{21}t_1&D_2t&\dots&-a_{2n}t_n\\

\hdotsfor[2]{4}\\

-a_{n1}t_1&-a_{n2}t_2&\dots&D_nt\end{pmatrix}

where

(12) Di =
∑
j∈n

aijtj , i = 1, . . . , n.

Set

D(t1, . . . , tn) =
δ

δt
detK(t, t1, . . . , tn)|t=1 .

Then

(13) D(t1, . . . , tn) =
∑
i∈n

Di detK(t = 1, t1, . . . , tn; i|i),

whereK(t = 1, t1, . . . , tn; i|i) is the ith principal submatrix ofK(t = 1, t1, . . . , tn).

Theorem 3.3 leads to

(14) detK(t1, t1, . . . , tn) =
∑
I∈n

(−1)|I|tn−|I|
∏
i∈I

ti
∏
j∈I

(Dj+λjtj) detA
(λt)(I|I).

Note that

(15)

detK(t = 1, t1, . . . , tn) =
∑
I∈n

(−1)|I|
∏
i∈I

ti
∏
j∈I

(Dj + λjtj) detA
(λ)(I|I) = 0.

Let ti = x̂i, i = 1, . . . , n. Lemma 3.1 yields

(16)

Å∑
i∈n

alixi

ã
detK(t = 1, x1, . . . , xn; l|l)

=

Å∏
i∈n

x̂i

ã ∑
I⊆n−{l}

(−1)|I| perA(λ)(I|I) detA(λ)(I ∪ {l}|I ∪ {l}).

\begin{multline}

\biggl(\sum_{\,i\in\mathbf{n}}a_{l _i}x_i\biggr)

\det\mathbf{K}(t=1,x_1,\dots,x_n;l |l )\\

=\biggl(\prod_{\,i\in\mathbf{n}}\hat x_i\biggr)

\sum_{I\subseteq\mathbf{n}-\{l \}}

(-1)^{\envert{I}}\per\mathbf{A}^{(\lambda)}(I|I)

\det\mathbf{A}^{(\lambda)}

(\overline I\cup\{l \}|\overline I\cup\{l \}).

\label{sum-ali}

\end{multline}

By (3), (6), and (7), we have

Proof: page numbers may be temporary
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Proposition 3.5.

(17) Hc =
1

2n

n∑
l=0

(−1)lDl,

where

(18) Dl =
∑
Il⊆n

D(t1, . . . , tn)2|
ti=

{
0, if i∈Il
1, otherwise

, i=1,...,n
.

4. Application

We consider here the applications of Theorems 5.1 and 5.2 on page 23 to

a complete multipartite graph Kn1...np . It can be shown that the number of

spanning trees of Kn1...np may be written

(19) T = np−2
p∏

i=1

(n− ni)ni−1

where

(20) n = n1 + · · ·+ np.

It follows from Theorems 5.1 and 5.2 that

Hc =
1

2n

n∑
l=0

(−1)l(n− l)p−2
∑

l1+···+lp=l

p∏
i=1

Ç
ni
li

å
· [(n− l)− (ni − li)]ni−li ·

ï
(n− l)2 −

p∑
j=1

(ni − li)2
ò
.

(21)

... \binom{n_i}{l _i}\\

and

Hc =
1

2

n−1∑
l=0

(−1)l(n− l)p−2
∑

l1+···+lp=l

p∏
i=1

Ç
ni
li

å
· [(n− l)− (ni − li)]ni−li

Å
1− lp

np

ã
[(n− l)− (np − lp)].

(22)

The enumeration of Hc in a Kn1···np graph can also be carried out by

Theorem 7.2 or 7.3 together with the algebraic method of (2). Some elegant

representations may be obtained. For example, Hc in a Kn1n2n3 graph may be

written

Hc =
n1!n2!n3!

n1 + n2 + n3

∑
i

ñÇ
n1
i

åÇ
n2

n3 − n1 + i

åÇ
n3

n3 − n2 + i

å
+

Ç
n1 − 1

i

åÇ
n2 − 1

n3 − n1 + i

åÇ
n3 − 1

n3 − n2 + i

åô
.

(23)

Proof: page numbers may be temporary
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5. Secret key exchanges

Modern cryptography is fundamentally concerned with the problem of

secure private communication. A Secret Key Exchange is a protocol where

Alice and Bob, having no secret information in common to start, are able to

agree on a common secret key, conversing over a public channel. The notion

of a Secret Key Exchange protocol was first introduced in the seminal paper

of Diffie and Hellman [2]. [2] presented a concrete implementation of a Secret

Key Exchange protocol, dependent on a specific assumption (a variant on the

discrete log), specially tailored to yield Secret Key Exchange. Secret Key

Exchange is of course trivial if trapdoor permutations exist. However, there is

no known implementation based on a weaker general assumption.

The concept of an informationally one-way function was introduced in [8].

We give only an informal definition here:

Definition 5.1 (one way). A polynomial time computable function f =

{fk} is informationally one-way if there is no probabilistic polynomial time

algorithm which (with probability of the form 1− k−e for some e > 0) returns

on input y ∈ {0, 1}k a random element of f−1(y).

In the non-uniform setting [8] show that these are not weaker than one-way

functions:

Theorem 5.1 ([8] (non-uniform)). The existence of informationally one-

way functions implies the existence of one-way functions.

We will stick to the convention introduced above of saying “non-uniform”

before the theorem statement when the theorem makes use of non-uniformity.

It should be understood that if nothing is said then the result holds for both

the uniform and the non-uniform models.

It now follows from Theorem 5.1 that

Theorem 5.2 (non-uniform). Weak SKE implies the existence of a one-

way function.

More recently, the polynomial-time, interior point algorithms for linear

programming have been extended to the case of convex quadratic programs [19]

and [21], certain linear complementarity problems [11] and [18], and the nonlin-

ear complementarity problem [10]. The connection between these algorithms

and the classical Newton method for nonlinear equations is well explained in

[11].

6. Review

We begin our discussion with the following definition:

Proof: page numbers may be temporary
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Definition 6.1. A function H : ℜn → ℜn is said to be B-differentiable

at the point z if (i) H is Lipschitz continuous in a neighborhood of z, and

(ii) there exists a positive homogeneous function BH(z) : ℜn → ℜn, called the

B-derivative of H at z, such that

lim
v→0

H(z + v)−H(z)−BH(z)v

∥v∥
= 0.

The function H is B-differentiable in set S if it is B-differentiable at every

point in S. The B-derivative BH(z) is said to be strong if

lim
(v,v′)→(0,0)

H(z + v)−H(z + v′)−BH(z)(v − v′)
∥v − v′∥

= 0.

Lemma 6.1. There exists a smooth function ψ0(z) defined for |z| > 1−2a

satisfying the following properties:

(i) ψ0(z) is bounded above and below by positive constants c1 ≤ ψ0(z) ≤ c2.
(ii) If |z| > 1, then ψ0(z) = 1.

(iii) For all z in the domain of ψ0, ∆0 lnψ0 ≥ 0.

(iv) If 1− 2a < |z| < 1− a, then ∆0 lnψ0 ≥ c3 > 0.

Proof. We choose ψ0(z) to be a radial function depending only on r = |z|.
Let h(r) ≥ 0 be a suitable smooth function satisfying h(r) ≥ c3 for 1 − 2a <

|z| < 1− a, and h(r) = 0 for |z| > 1− a
2 . The radial Laplacian

∆0 lnψ0(r) =

Å
d2

dr2
+

1

r

d

dr

ã
lnψ0(r)

has smooth coefficients for r > 1− 2a. Therefore, we may apply the existence

and uniqueness theory for ordinary differential equations. Simply let lnψ0(r)

be the solution of the differential equationÅ
d2

dr2
+

1

r

d

dr

ã
lnψ0(r) = h(r)

with initial conditions given by lnψ0(1) = 0 and lnψ′
0(1) = 0.

Next, let Dν be a finite collection of pairwise disjoint disks, all of which

are contained in the unit disk centered at the origin in C. We assume that

Dν = {z | |z − zν | < δ}. Suppose that Dν(a) denotes the smaller concentric

disk Dν(a) = {z | |z − zν | ≤ (1 − 2a)δ}. We define a smooth weight function

Φ0(z) for z ∈ C −
⋃

ν Dν(a) by setting Φ0(z) = 1 when z /∈
⋃

ν Dν and

Φ0(z) = ψ0((z−zν)/δ) when z is an element of Dν . It follows from Lemma 6.1

that Φ0 satisfies the properties:

(i) Φ0(z) is bounded above and below by positive constants c1 ≤ Φ0(z) ≤ c2.
(ii) ∆0 lnΦ0 ≥ 0 for all z ∈ C −

⋃
ν Dν(a), the domain where the function Φ0

is defined.

(iii) ∆0 lnΦ0 ≥ c3δ−2 when (1− 2a)δ < |z − zν | < (1− a)δ.

Proof: page numbers may be temporary
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Let Aν denote the annulus Aν = {(1 − 2a)δ < |z − zν | < (1 − a)δ}, and

set A =
⋃

ν Aν . The properties (2) and (3) of Φ0 may be summarized as

∆0 lnΦ0 ≥ c3δ−2χA, where χA is the characteristic function of A. □

Suppose that α is a nonnegative real constant. We apply Proposition 3.5

with Φ(z) = Φ0(z)e
α|z|2 . If u ∈ C∞

0 (R2 −
⋃

ν Dν(a)), assume that D is a

bounded domain containing the support of u and A ⊂ D ⊂ R2 −
⋃

ν Dν(a). A

calculation gives∫
D

∣∣∣∂u∣∣∣2Φ0(z)e
α|z|2 ≥ c4α

∫
D
|u|2Φ0e

α|z|2 + c5δ
−2

∫
A

|u|2Φ0e
α|z|2 .

The boundedness, property (1) of Φ0, then yields∫
D

∣∣∣∂u∣∣∣2 eα|z|2 ≥ c6α ∫
D
|u|2 eα|z|

2

+ c7δ
−2

∫
A

|u|2 eα|z|
2

.

Let B(X) be the set of blocks of ΛX and let b(X) = |B(X)|. If ϕ ∈ QX

then ϕ is constant on the blocks of ΛX .

(24) PX = {ϕ ∈M | Λϕ = ΛX}, QX = {ϕ ∈M | Λϕ ≥ ΛX}.

If Λϕ ≥ ΛX then Λϕ = ΛY for some Y ≥ X so that

QX =
⋃

Y≥X

PY .

Thus by Möbius inversion

|PY | =
∑
X≥Y

µ(Y,X) |QX | .

Thus there is a bijection from QX to WB(X). In particular |QX | = wb(X).

Next note that b(X) = dimX. We see this by choosing a basis for X

consisting of vectors vk defined by

vki =

{
1 if i ∈ Λk,

0 otherwise.

\[v^{k}_{i}=

\begin{cases} 1 & \text{if $i \in \Lambda_{k}$},\\

0 &\text{otherwise.} \end{cases}

\]

Lemma 6.2. Let A be an arrangement. Then

χ(A, t) =
∑
B⊆A

(−1)|B|tdimT (B).

Proof: page numbers may be temporary
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In order to compute R′′ recall the definition of S(X,Y ) from Lemma 3.1.

Since H ∈ B, AH ⊆ B. Thus if T (B) = Y then B ∈ S(H,Y ). Let L′′ = L(A′′).

Then

R′′ =
∑

H∈B⊆A
(−1)|B|tdimT (B)

=
∑
Y ∈L′′

∑
B∈S(H,Y )

(−1)|B|tdimY

= −
∑
Y ∈L′′

∑
B∈S(H,Y )

(−1)|B−AH |tdimY

= −
∑
Y ∈L′′

µ(H,Y )tdimY

= −χ(A′′, t).

(25)

Corollary 6.3. Let (A,A′,A′′) be a triple of arrangements. Then

π(A, t) = π(A′, t) + tπ(A′′, t).

Definition 6.2. Let (A,A′,A′′) be a triple with respect to the hyperplane

H ∈ A. Call H a separator if T (A) ̸∈ L(A′).

Corollary 6.4. Let (A,A′,A′′) be a triple with respect to H ∈ A.
(i) If H is a separator then

µ(A) = −µ(A′′)

and hence

|µ(A)| =
∣∣µ(A′′)

∣∣ .
(ii) If H is not a separator then

µ(A) = µ(A′)− µ(A′′)

and

|µ(A)| =
∣∣µ(A′)

∣∣+ ∣∣µ(A′′)
∣∣ .

Proof. It follows from Theorem 5.1 that π(A, t) has leading term

(−1)r(A)µ(A)tr(A).

The conclusion follows by comparing coefficients of the leading terms on both

sides of the equation in Corollary 6.3. If H is a separator then r(A′) < r(A)
and there is no contribution from π(A′, t). □

The Poincaré polynomial of an arrangement will appear repeatedly in

these notes. It will be shown to equal the Poincaré polynomial of the graded

algebras which we are going to associate with A. It is also the Poincaré poly-

nomial of the complement M(A) for a complex arrangement. Here we prove
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Figure 1. Q(A1) = xyz(x− z)(x+ z)(y − z)(y + z)

Figure 2. Q(A2) = xyz(x+ y + z)(x+ y − z)(x− y + z)(x− y − z)

that the Poincaré polynomial is the chamber counting function for a real ar-

rangement. The complement M(A) is a disjoint union of chambers

M(A) =
⋃

C∈Cham(A)

C.

The number of chambers is determined by the Poincaré polynomial as follows.

Theorem 6.5. Let AR be a real arrangement. Then

|Cham(AR)| = π(AR, 1).

Proof. We check the properties required in Corollary 6.4: (i) follows from

π(Φl, t) = 1, and (ii) is a consequence of Corollary 3.4. □

Theorem 6.6. Let ϕ be a protocol for a random pair (X,Y ). If one of

σϕ(x
′, y) and σϕ(x, y

′) is a prefix of the other and (x, y) ∈ SX,Y , then

⟨σj(x′, y)⟩∞j=1 = ⟨σj(x, y)⟩∞j=1 = ⟨σj(x, y′)⟩∞j=1.
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Proof. We show by induction on i that

⟨σj(x′, y)⟩ij=1 = ⟨σj(x, y)⟩ij=1 = ⟨σj(x, y′)⟩ij=1.

The induction hypothesis holds vacuously for i = 0. Assume it holds for

i − 1, in particular [σj(x
′, y)]i−1

j=1 = [σj(x, y
′)]i−1

j=1. Then one of [σj(x
′, y)]∞j=i

and [σj(x, y
′)]∞j=i is a prefix of the other which implies that one of σi(x

′, y)

and σi(x, y
′) is a prefix of the other. If the ith message is transmitted by

PX then, by the separate-transmissions property and the induction hypothe-

sis, σi(x, y) = σi(x, y
′), hence one of σi(x, y) and σi(x

′, y) is a prefix of the

other. By the implicit-termination property, neither σi(x, y) nor σi(x
′, y) can

be a proper prefix of the other, hence they must be the same and σi(x
′, y) =

σi(x, y) = σi(x, y
′). If the ith message is transmitted by PY then, symmet-

rically, σi(x, y) = σi(x
′, y) by the induction hypothesis and the separate-

transmissions property, and, then, σi(x, y) = σi(x, y
′) by the implicit-termination

property, proving the induction step. □

If ϕ is a protocol for (X,Y ), and (x, y), (x′, y) are distinct inputs in SX,Y ,

then, by the correct-decision property, ⟨σj(x, y)⟩∞j=1 ̸= ⟨σj(x′, y)⟩∞j=1.

Equation (25) defined PY ’s ambiguity set SX|Y (y) to be the set of possible

X values when Y = y. The last corollary implies that for all y ∈ SY , the

multiset1 of codewords {σϕ(x, y) : x ∈ SX|Y (y)} is prefix free.

7. One-way complexity

Ĉ1(X|Y ), the one-way complexity of a random pair (X,Y ), is the number

of bits PX must transmit in the worst case when PY is not permitted to transmit

any feedback messages. Starting with SX,Y , the support set of (X,Y ), we define

G(X|Y ), the characteristic hypergraph of (X,Y ), and show that

Ĉ1(X|Y ) = ⌈ logχ(G(X|Y ))⌉ .

Let (X,Y ) be a random pair. For each y in SY , the support set of Y ,

equation (25) defined SX|Y (y) to be the set of possible x values when Y = y.

The characteristic hypergraph G(X|Y ) of (X,Y ) has SX as its vertex set and

the hyperedge SX|Y (y) for each y ∈ SY .
We can now prove a continuity theorem.

Theorem 7.1. Let Ω ⊂ Rn be an open set, let u ∈ BV (Ω;Rm), and let

(26) T u
x =

ß
y ∈ Rm : y = ũ(x) +

≠
Du

|Du|
(x), z

∑
for some z ∈ Rn

™
1A multiset allows multiplicity of elements. Hence, {0, 01, 01} is prefix free as a set, but

not as a multiset.
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for every x ∈ Ω\Su. Let f : Rm → Rk be a Lipschitz continuous function such

that f(0) = 0, and let v = f(u) : Ω→ Rk. Then v ∈ BV (Ω;Rk) and

(27) Jv = (f(u+)− f(u−))⊗ νu · Hn−1

∣∣
Su
.

In addition, for
∣∣∣‹Du∣∣∣-almost every x ∈ Ω the restriction of the function f to

T u
x is differentiable at ũ(x) and

(28) ‹Dv = ∇(f |Tu
x
)(ũ)

‹Du∣∣∣‹Du∣∣∣ · ∣∣∣‹Du∣∣∣ .
Before proving the theorem, we state without proof three elementary re-

marks which will be useful in the sequel.

Remark 7.1. Let ω : ]0,+∞[ → ]0,+∞[ be a continuous function such

that ω(t)→ 0 as t→ 0. Then

lim
h→0+

g(ω(h)) = L⇔ lim
h→0+

g(h) = L

for any function g : ]0,+∞[→ R.

Remark 7.2. Let g : Rn → R be a Lipschitz continuous function and as-

sume that

L(z) = lim
h→0+

g(hz)− g(0)
h

exists for every z ∈ Qn and that L is a linear function of z. Then g is differ-

entiable at 0.

Remark 7.3. Let A : Rn → Rm be a linear function, and let f : Rm → R

be a function. Then the restriction of f to the range of A is differentiable at 0

if and only if f(A) : Rn → R is differentiable at 0 and

∇(f |Im(A))(0)A = ∇(f(A))(0).

Proof. We begin by showing that v ∈ BV (Ω;Rk) and

(29) |Dv| (B) ≤ K |Du| (B) ∀B ∈ B(Ω),

where K > 0 is the Lipschitz constant of f . By (13) and by the approxima-

tion result quoted in §3, it is possible to find a sequence (uh) ⊂ C1(Ω;Rm)

converging to u in L1(Ω;Rm) and such that

lim
h→+∞

∫
Ω

|∇uh| dx = |Du| (Ω).

The functions vh = f(uh) are locally Lipschitz continuous in Ω, and the defini-

tion of differential implies that |∇vh| ≤ K |∇uh| almost everywhere in Ω. The
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lower semicontinuity of the total variation and (13) yield

|Dv| (Ω) ≤ lim inf
h→+∞

|Dvh| (Ω) = lim inf
h→+∞

∫
Ω

|∇vh| dx

≤ K lim inf
h→+∞

∫
Ω

|∇uh| dx = K |Du| (Ω).
(30)

Since f(0) = 0, we have also∫
Ω

|v| dx ≤ K
∫
Ω

|u| dx;

therefore u ∈ BV (Ω;Rk). Repeating the same argument for every open set

A ⊂ Ω, we get (29) for every B ∈ B(Ω), because |Dv|, |Du| are Radon mea-

sures. To prove Lemma 6.1, first we observe that

(31) Sv ⊂ Su, ṽ(x) = f(ũ(x)) ∀x ∈ Ω\Su.

In fact, for every ε > 0 we have

{y ∈ Bρ(x) : |v(y)− f(ũ(x))| > ε} ⊂ {y ∈ Bρ(x) : |u(y)− ũ(x)| > ε/K},

hence

lim
ρ→0+

|{y ∈ Bρ(x) : |v(y)− f(ũ(x))| > ε}|
ρn

= 0

whenever x ∈ Ω\Su. By a similar argument, if x ∈ Su is a point such that

there exists a triplet (u+, u−, νu) satisfying (14), (15), then

(v+(x)− v−(x))⊗ νv = (f(u+(x))− f(u−(x)))⊗ νu if x ∈ Sv

and f(u−(x)) = f(u+(x)) if x ∈ Su\Sv. Hence, by (1.8) we get

Jv(B) =

∫
B∩Sv

(v+ − v−)⊗ νv dHn−1 =

∫
B∩Sv

(f(u+)− f(u−))⊗ νu dHn−1

=

∫
B∩Su

(f(u+)− f(u−))⊗ νu dHn−1

and Lemma 6.1 is proved. □

To prove (31), it is not restrictive to assume that k = 1. Moreover, to

simplify our notation, from now on we shall assume that Ω = Rn. The proof

of (31) is divided into two steps. In the first step we prove the statement in

the one-dimensional case (n = 1), using Theorem 5.2. In the second step we

achieve the general result using Theorem 7.1.

Step 1. Assume that n = 1. Since Su is at most countable, (7) yields

that
∣∣∣‹Dv∣∣∣ (Su\Sv) = 0, so that (19) and (21) imply that Dv = ‹Dv + Jv is the
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Radon-Nikodým decomposition of Dv in absolutely continuous and singular

part with respect to
∣∣∣‹Du∣∣∣. By Theorem 5.2, we have‹Dv∣∣∣‹Du∣∣∣(t) = lim

s→t+

Dv([t, s[)∣∣∣‹Du∣∣∣ ([t, s[) , ‹Du∣∣∣‹Du∣∣∣(t) = lim
s→t+

Du([t, s[)∣∣∣‹Du∣∣∣ ([t, s[)∣∣∣‹Du∣∣∣-almost everywhere in R. It is well known (see, for instance, [20, 2.5.16])

that every one-dimensional function of bounded variation w has a unique left

continuous representative, i.e., a function ŵ such that ŵ = w almost every-

where and lims→t− ŵ(s) = ŵ(t) for every t ∈ R. These conditions imply

(32) û(t) = Du(]−∞, t[), v̂(t) = Dv(]−∞, t[) ∀t ∈ R

and

(33) v̂(t) = f(û(t)) ∀t ∈ R.

Let t ∈ R be such that
∣∣∣‹Du∣∣∣ ([t, s[) > 0 for every s > t and assume that the

limits in (22) exist. By (23) and (24) we get

v̂(s)− v̂(t)∣∣∣‹Du∣∣∣ ([t, s[) =
f(û(s))− f(û(t))∣∣∣‹Du∣∣∣ ([t, s[)

=

f(û(s))− f(û(t) +
‹Du∣∣∣‹Du∣∣∣(t) ∣∣∣‹Du∣∣∣ ([t, s[))∣∣∣‹Du∣∣∣ ([t, s[)

+

f(û(t) +
‹Du∣∣∣‹Du∣∣∣(t) ∣∣∣‹Du∣∣∣ ([t, s[))− f(û(t))∣∣∣‹Du∣∣∣ ([t, s[)

for every s > t. Using the Lipschitz condition on f we find∣∣∣∣∣∣∣∣∣∣∣∣
v̂(s)− v̂(t)∣∣∣‹Du∣∣∣ ([t, s[) − f(û(t) +

‹Du∣∣∣‹Du∣∣∣(t) ∣∣∣‹Du∣∣∣ ([t, s[))− f(û(t))∣∣∣‹Du∣∣∣ ([t, s[)
∣∣∣∣∣∣∣∣∣∣∣∣

≤ K

∣∣∣∣∣∣ û(s)− û(t)∣∣∣‹Du∣∣∣ ([t, s[) − ‹Du∣∣∣‹Du∣∣∣(t)∣∣∣∣∣∣ .
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By (29), the function s→
∣∣∣‹Du∣∣∣ ([t, s[) is continuous and converges to 0 as s ↓ t.

Therefore Remark 7.1 and the previous inequality imply‹Dv∣∣∣‹Du∣∣∣(t) = lim
h→0+

f(û(t) + h
‹Du∣∣∣‹Du∣∣∣(t))− f(û(t))
h

∣∣∣‹Du∣∣∣ -a.e. in R.

By (22), û(x) = ũ(x) for every x ∈ R\Su; moreover, applying the same argu-

ment to the functions u′(t) = u(−t), v′(t) = f(u′(t)) = v(−t), we get‹Dv∣∣∣‹Du∣∣∣(t) = lim
h→0

f(ũ(t) + h
‹Du∣∣∣‹Du∣∣∣(t))− f(ũ(t))
h

∣∣∣‹Du∣∣∣ -a.e. in R

and our statement is proved.

Step 2. Let us consider now the general case n > 1. Let ν ∈ Rn be such

that |ν| = 1, and let πν = {y ∈ Rn : ⟨y, ν⟩ = 0}. In the following, we shall

identify Rn with πν ×R, and we shall denote by y the variable ranging in πν
and by t the variable ranging in R. By the just proven one-dimensional result,

and by Theorem 3.3, we get

lim
h→0

f(ũ(y + tν) + h
‹Duy∣∣∣‹Duy∣∣∣(t))− f(ũ(y + tν))

h
=
‹Dvy∣∣∣‹Duy∣∣∣(t) ∣∣∣‹Duy∣∣∣ -a.e. in R

for Hn−1-almost every y ∈ πν . We claim that

(34)
⟨‹Du, ν⟩∣∣∣⟨‹Du, ν⟩∣∣∣(y + tν) =

‹Duy∣∣∣‹Duy∣∣∣(t) ∣∣∣‹Duy∣∣∣ -a.e. in R

for Hn−1-almost every y ∈ πν . In fact, by (16) and (18) we get∫
πν

‹Duy∣∣∣‹Duy∣∣∣ · ∣∣∣‹Duy∣∣∣ dHn−1(y) =

∫
πν

‹Duy dHn−1(y)

= ⟨‹Du, ν⟩ = ⟨‹Du, ν⟩∣∣∣⟨‹Du, ν⟩∣∣∣ · ∣∣∣⟨‹Du, ν⟩∣∣∣ = ∫
πν

⟨‹Du, ν⟩∣∣∣⟨‹Du, ν⟩∣∣∣(y + ·ν) · ∣∣∣‹Duy∣∣∣ dHn−1(y)

and (24) follows from (13). By the same argument it is possible to prove that

(35)
⟨‹Dv, ν⟩∣∣∣⟨‹Du, ν⟩∣∣∣(y + tν) =

‹Dvy∣∣∣‹Duy∣∣∣(t) ∣∣∣‹Duy∣∣∣ -a.e. in R

Proof: page numbers may be temporary



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

SAMPLE PAPER 33

for Hn−1-almost every y ∈ πν . By (24) and (25) we get

lim
h→0

f(ũ(y + tν) + h
⟨‹Du, ν⟩∣∣∣⟨‹Du, ν⟩∣∣∣(y + tν))− f(ũ(y + tν))

h
=
⟨‹Dv, ν⟩∣∣∣⟨‹Du, ν⟩∣∣∣(y + tν)

for Hn−1-almost every y ∈ πν , and using again (14), (15) we get

lim
h→0

f(ũ(x) + h
⟨‹Du, ν⟩∣∣∣⟨‹Du, ν⟩∣∣∣(x))− f(ũ(x))

h
=
⟨‹Dv, ν⟩∣∣∣⟨‹Du, ν⟩∣∣∣(x)∣∣∣⟨‹Du, ν⟩∣∣∣-a.e. in Rn.

Since the function
∣∣∣⟨‹Du, ν⟩∣∣∣ / ∣∣∣‹Du∣∣∣ is strictly positive

∣∣∣⟨‹Du, ν⟩∣∣∣-almost ev-

erywhere, we obtain also

lim
h→0

f(ũ(x) + h

∣∣∣⟨‹Du, ν⟩∣∣∣∣∣∣‹Du∣∣∣ (x)
⟨‹Du, ν⟩∣∣∣⟨‹Du, ν⟩∣∣∣(x))− f(ũ(x))
h

=

∣∣∣⟨‹Du, ν⟩∣∣∣∣∣∣‹Du∣∣∣ (x)
⟨‹Dv, ν⟩∣∣∣⟨‹Du, ν⟩∣∣∣(x)∣∣∣⟨‹Du, ν⟩∣∣∣-almost everywhere in Rn.

Finally, since∣∣∣⟨‹Du, ν⟩∣∣∣∣∣∣‹Du∣∣∣ ⟨‹Du, ν⟩∣∣∣⟨‹Du, ν⟩∣∣∣ = ⟨‹Du, ν⟩∣∣∣‹Du∣∣∣ =

∞ ‹Du∣∣∣‹Du∣∣∣ , ν∫ ∣∣∣‹Du∣∣∣ -a.e. in Rn

∣∣∣⟨‹Du, ν⟩∣∣∣∣∣∣‹Du∣∣∣ ⟨‹Dv, ν⟩∣∣∣⟨‹Du, ν⟩∣∣∣ = ⟨‹Dv, ν⟩∣∣∣‹Du∣∣∣ =

∞ ‹Dv∣∣∣‹Du∣∣∣ , ν∫ ∣∣∣‹Du∣∣∣ -a.e. in Rn

and since both sides of (33) are zero
∣∣∣‹Du∣∣∣-almost everywhere on

∣∣∣⟨‹Du, ν⟩∣∣∣-
negligible sets, we conclude that

lim
h→0

f

Ñ
ũ(x) + h

∞ ‹Du∣∣∣‹Du∣∣∣(x), ν∫é− f(ũ(x))
h

=

∞ ‹Dv∣∣∣‹Du∣∣∣(x), ν∫ ,
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AMS AND BORIS VEYTSMAN∣∣∣‹Du∣∣∣-a.e. in Rn. Since ν is arbitrary, by Remarks 7.2 and 7.3 the restriction of

f to the affine space T u
x is differentiable at ũ(x) for

∣∣∣‹Du∣∣∣-almost every x ∈ Rn

and (26) holds. □

It follows from (13), (14), and (15) that

(36) D(t1, . . . , tn) =
∑
I∈n

(−1)|I|−1 |I|
∏
i∈I

ti
∏
j∈I

(Dj + λjtj) detA
(λ)(I|I).

Let ti = x̂i, i = 1, . . . , n. Lemma 1 leads to

(37) D(x̂1, . . . , x̂n) =
∏
i∈n

x̂i
∑
I∈n

(−1)|I|−1 |I| perA(λ)(I|I) detA(λ)(I|I).

By (3), (13), and (37), we have the following result:

Theorem 7.2.

(38) Hc =
1

2n

n∑
l=1

l(−1)l−1A
(λ)
l ,

where

(39) A
(λ)
l =

∑
Il⊆n

perA(λ)(Il|Il) detA(λ)(I l|I l), |Il| = l.

It is worth noting that A
(λ)
l of (39) is similar to the coefficients bl of the

characteristic polynomial of (10). It is well known in graph theory that the

coefficients bl can be expressed as a sum over certain subgraphs. It is interesting

to see whether Al, λ = 0, structural properties of a graph.

We may call (38) a parametric representation of Hc. In computation, the

parameter λi plays very important roles. The choice of the parameter usually

depends on the properties of the given graph. For a complete graph Kn, let

λi = 1, i = 1, . . . , n. It follows from (39) that

(40) A
(1)
l =

{
n!, if l = 1

0, otherwise.

By (38)

(41) Hc =
1

2
(n− 1)!.

For a complete bipartite graph Kn1n2 , let λi = 0, i = 1, . . . , n. By (39),

(42) Al =

{
−n1!n2!δn1n2 , if l = 2

0, otherwise .

Theorem 7.2 leads to

(43) Hc =
1

n1 + n2
n1!n2!δn1n2 .
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Now, we consider an asymmetrical approach. Theorem 3.3 leads to

(44) detK(t = 1, t1, . . . , tn; l|l)

=
∑

I⊆n−{l}

(−1)|I|
∏
i∈I

ti
∏
j∈I

(Dj + λjtj) detA
(λ)(I ∪ {l}|I ∪ {l}).

By (3) and (16) we have the following asymmetrical result:

Theorem 7.3.

(45) Hc =
1

2

∑
I⊆n−{l}

(−1)|I| perA(λ)(I|I) detA(λ)(I ∪ {l}|I ∪ {l})

which reduces to Goulden–Jackson’s formula when λi = 0, i = 1, . . . , n [14].

8. Various font features of the amsmath package

8.1. Bold versions of special symbols. In the amsmath package \boldsymbol

is used for getting individual bold math symbols and bold Greek letters—

everything in math except for letters of the Latin alphabet, where you’d use

\mathbf. For example,

A_\infty + \pi A_0 \sim

\mathbf{A}_{\boldsymbol{\infty}} \boldsymbol{+}

\boldsymbol{\pi} \mathbf{A}_{\boldsymbol{0}}

looks like this:

A∞ + πA0 ∼ A∞ + πA0

8.2. “Poor man’s bold”. If a bold version of a particular symbol doesn’t

exist in the available fonts, then \boldsymbol can’t be used to make that

symbol bold. At the present time, this means that \boldsymbol can’t be used

with symbols from the msam and msbm fonts, among others. In some cases,

poor man’s bold (\pmb) can be used instead of \boldsymbol:

∂x

∂y

∣∣∣∣∣∣∣∣∣∣∣∣∂y∂z
\[\frac{\partial x}{\partial y}

\pmb{\bigg\vert}

\frac{\partial y}{\partial z}\]

So-called “large operator” symbols such as
∑

and
∏

require an additional

command, \mathop, to produce proper spacing and limits when \pmb is used.

For further details see The TEXbook.∑
i<B
i odd

∏
κ

κF (ri)
∑∑∑
i<B
i odd

∏∏∏
κ

κ(ri)
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\[\sum_{\substack{i<B\\\text{$i$ odd}}}

\prod_\kappa \kappa F(r_i)\qquad

\mathop{\pmb{\sum}}_{\substack{i<B\\\text{$i$ odd}}}

\mathop{\pmb{\prod}}_\kappa \kappa(r_i)

\]

9. Compound symbols and other features

9.1. Multiple integral signs. \iint, \iiint, and \iiiint give multiple

integral signs with the spacing between them nicely adjusted, in both text and

display style. \idotsint gives two integral signs with dots between them.∫∫
A

f(x, y) dx dy

∫∫∫
A

f(x, y, z) dx dy dz(46)

∫∫∫∫
A

f(w, x, y, z) dw dx dy dz

∫
· · ·

∫
A

f(x1, . . . , xk)(47)

9.2. Over and under arrows. Some extra over and under arrow operations

are provided in the amsmath package. (Basic LATEX provides \overrightarrow

and \overleftarrow).

−−−−−−→
ψδ(t)Eth = ψδ(t)Eth−−−−−−→
←−−−−−−
ψδ(t)Eth = ψδ(t)Eth←−−−−−−
←−−−−→
ψδ(t)Eth = ψδ(t)Eth←−−−−→

\begin{align*}

\overrightarrow{\psi_\delta(t) E_t h}&

=\underrightarrow{\psi_\delta(t) E_t h}\\

\overleftarrow{\psi_\delta(t) E_t h}&

=\underleftarrow{\psi_\delta(t) E_t h}\\

\overleftrightarrow{\psi_\delta(t) E_t h}&

=\underleftrightarrow{\psi_\delta(t) E_t h}

\end{align*}

These all scale properly in subscript sizes:∫
−→
AB

ax dx

\[\int_{\overrightarrow{AB}} ax\,dx\]

9.3. Dots. Normally you need only type \dots for ellipsis dots in a math

formula. The main exception is when the dots fall at the end of the formula;

then you need to specify one of \dotsc (series dots, after a comma), \dotsb
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(binary dots, for binary relations or operators), \dotsm (multiplication dots),

or \dotsi (dots after an integral). For example, the input

Then we have the series $A_1,A_2,\dotsc$,

the regional sum $A_1+A_2+\dotsb$,

the orthogonal product $A_1A_2\dotsm$,

and the infinite integral

\[\int_{A_1}\int_{A_2}\dotsi\].

produces

Then we have the series A1, A2, . . . , the regional sum A1+A2+

· · · , the orthogonal product A1A2 · · · , and the infinite integral∫
A1

∫
A2

· · ·

9.4. Accents in math. Double accents:

ˆ̂
H ˇ̌C ˜̃T

´́
A

`̀
G ˙̇D ¨̈D

˘̆
B ¯̄B

⃗⃗
V

\[\Hat{\Hat{H}}\quad\Check{\Check{C}}\quad

\Tilde{\Tilde{T}}\quad\Acute{\Acute{A}}\quad

\Grave{\Grave{G}}\quad\Dot{\Dot{D}}\quad

\Ddot{\Ddot{D}}\quad\Breve{\Breve{B}}\quad

\Bar{\Bar{B}}\quad\Vec{\Vec{V}}\]

This double accent operation is complicated and tends to slow down the pro-

cessing of a LATEX file.

9.5. Dot accents. \dddot and \ddddot are available to produce triple and

quadruple dot accents in addition to the \dot and \ddot accents already avail-

able in LATEX: ...
Q

....
R

\[\dddot{Q}\qquad\ddddot{R}\]

9.6. Roots. In the amsmath package \leftroot and \uproot allow you to

adjust the position of the root index of a radical:

\sqrt[\leftroot{-2}\uproot{2}\beta]{k}

gives good positioning of the β:
β√
k

9.7. Boxed formulas. The command \boxed puts a box around its argu-

ment, like \fbox except that the contents are in math mode:

\boxed{W_t-F\subseteq V(P_i)\subseteq W_t}

Wt − F ⊆ V (Pi) ⊆Wt .
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9.8. Extensible arrows. \xleftarrow and \xrightarrow produce arrows

that extend automatically to accommodate unusually wide subscripts or su-

perscripts. The text of the subscript or superscript are given as an optional

resp. mandatory argument: Example:

0
α←−
ζ
F ×△[n− 1]

∂0α(b)−−−−→ E∂0b

\[0 \xleftarrow[\zeta]{\alpha} F\times\triangle[n-1]

\xrightarrow{\partial_0\alpha(b)} E^{\partial_0b}\]

9.9. \overset, \underset, and \sideset. Examples:

∗
X X

∗

a
X
b

\[\overset{*}{X}\qquad\underset{*}{X}\qquad

\overset{a}{\underset{b}{X}}\]

The command \sideset is for a rather special purpose: putting symbols

at the subscript and superscript corners of a large operator symbol such as
∑

or
∏
, without affecting the placement of limits. Examples:

∗

∗

∏∗

∗
k

∑′

0≤i≤m

Eiβx

\[\sideset{_*^*}{_*^*}\prod_k\qquad

\sideset{}{’}\sum_{0\le i\le m} E_i\beta x

\]

9.10. The \text command. The main use of the command \text is for

words or phrases in a display:

y = y′ if and only if y′k = δkyτ(k)

\[\mathbf{y}=\mathbf{y}’\quad\text{if and only if}\quad

y’_k=\delta_k y_{\tau(k)}\]

9.11. Operator names. The more common math functions such as log, sin,

and lim have predefined control sequences: \log, \sin, \lim. The amsmath

package provides \DeclareMathOperator and \DeclareMathOperator* for

producing new function names that will have the same typographical treat-

ment. Examples:

∥f∥∞ = ess supx∈Rn |f(x)|

\[\norm{f}_\infty=

\esssup_{x\in R^n}\abs{f(x)}\]

meas1{u ∈ R1
+ : f∗(u) > α} = measn{x ∈ Rn : |f(x)| ≥ α} ∀α > 0.

Proof: page numbers may be temporary



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

SAMPLE PAPER 39

\[\meas_1\{u\in R_+^1\colon f^*(u)>\alpha\}

=\meas_n\{x\in R^n\colon \abs{f(x)}\geq\alpha\}

\quad \forall\alpha>0.\]

\esssup and \meas would be defined in the document preamble as

\DeclareMathOperator*{\esssup}{ess\,sup}

\DeclareMathOperator{\meas}{meas}

The following special operator names are predefined in the amsmath pack-

age: \varlimsup, \varliminf, \varinjlim, and \varprojlim. Here’s what

they look like in use:

lim
n→∞

Q(un, un − u#) ≤ 0(48)

lim
n→∞

|an+1| / |an| = 0(49)

lim−→(mλ
i ·)∗ ≤ 0(50)

lim←−
p∈S(A)

Ap ≤ 0(51)

\begin{align}

&\varlimsup_{n\rightarrow\infty}

\mathcal{Q}(u_n,u_n-u^{\#})\le0\\

&\varliminf_{n\rightarrow\infty}

\left\lvert a_{n+1}\right\rvert/\left\lvert a_n\right\rvert=0\\

&\varinjlim (m_i^\lambda\cdot)^*\le0\\

&\varprojlim_{p\in S(A)}A_p\le0

\end{align}

9.12. \mod and its relatives. The commands \mod and \pod are variants

of \pmod preferred by some authors; \mod omits the parentheses, whereas \pod

omits the ‘mod’ and retains the parentheses. Examples:

x ≡ y + 1 (mod m2)(52)

x ≡ y + 1 mod m2(53)

x ≡ y + 1 (m2)(54)

\begin{align}

x&\equiv y+1\pmod{m^2}\\

x&\equiv y+1\mod{m^2}\\

x&\equiv y+1\pod{m^2}

\end{align}

9.13. Fractions and related constructions. The usual notation for binomi-

als is similar to the fraction concept, so it has a similar command \binom with
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two arguments. Example:∑
γ∈ΓC

Iγ = 2k −
Ç
k

1

å
2k−1 +

Ç
k

2

å
2k−2

+ · · ·+ (−1)l
Ç
k

l

å
2k−l + · · ·+ (−1)k

= (2− 1)k = 1

(55)

\begin{equation}

\begin{split}

[\sum_{\gamma\in\Gamma_C} I_\gamma&

=2^k-\binom{k}{1}2^{k-1}+\binom{k}{2}2^{k-2}\\

&\quad+\dots+(-1)^l\binom{k}{l}2^{k-l}

+\dots+(-1)^k\\

&=(2-1)^k=1

\end{split}

\end{equation}

There are also abbreviations

\dfrac \dbinom

\tfrac \tbinom

for the commonly needed constructions

{\displaystyle\frac ... } {\displaystyle\binom ... }

{\textstyle\frac ... } {\textstyle\binom ... }

The generalized fraction command \genfrac provides full access to the

six TEX fraction primitives:

\over:
n+ 1

2
\overwithdelims:

Æ
n+ 1

2

∏
(56)

\atop:
n+ 1

2
\atopwithdelims:

Ç
n+ 1

2

å
(57)

\above:
n+ 1

2
\abovewithdelims:

ñ
n+ 1

2

ô
(58)

\text{\cn{over}: }&\genfrac{}{}{}{}{n+1}{2}&

\text{\cn{overwithdelims}: }&

\genfrac{\langle}{\rangle}{}{}{n+1}{2}\\

\text{\cn{atop}: }&\genfrac{}{}{0pt}{}{n+1}{2}&

\text{\cn{atopwithdelims}: }&

\genfrac{(}{)}{0pt}{}{n+1}{2}\\

\text{\cn{above}: }&\genfrac{}{}{1pt}{}{n+1}{2}&

\text{\cn{abovewithdelims}: }&
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\genfrac{[}{]}{1pt}{}{n+1}{2}

9.14. Continued fractions. The continued fraction

(59)
1

√
2 +

1

√
2 +

1

√
2 +

1

√
2 +

1
√
2 + · · ·

can be obtained by typing

\cfrac{1}{\sqrt{2}+

\cfrac{1}{\sqrt{2}+

\cfrac{1}{\sqrt{2}+

\cfrac{1}{\sqrt{2}+

\cfrac{1}{\sqrt{2}+\dotsb

}}}}}

Left or right placement of any of the numerators is accomplished by using

\cfrac[l] or \cfrac[r] instead of \cfrac.

9.15. Smash. In amsmath there are optional arguments t and b for the

plain TEX command \smash, because sometimes it is advantageous to be able

to ‘smash’ only the top or only the bottom of something while retaining the

natural depth or height. In the formula Xj = (1/
√
λj)X

′
j \smash[b] has been

used to limit the size of the radical symbol.

$X_j=(1/\sqrt{\smash[b]{\lambda_j}})X_j’$

Without the use of \smash[b] the formula would have appeared thus: Xj =

(1/
√
λj)X

′
j , with the radical extending to encompass the depth of the subscript

j.

9.16. The ‘cases’ environment. ‘Cases’ constructions like the following

can be produced using the cases environment.

(60) Pr−j =

{
0 if r − j is odd,

r! (−1)(r−j)/2 if r − j is even.

\begin{equation} P_{r-j}=

\begin{cases}

0& \text{if $r-j$ is odd},\\

r!\,(-1)^{(r-j)/2}& \text{if $r-j$ is even}.

\end{cases}

\end{equation}
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Notice the use of \text and the embedded math.

9.17. Matrix. Here are samples of the matrix environments, \matrix,

\pmatrix, \bmatrix, \Bmatrix, \vmatrix and \Vmatrix:

(61)
ϑ ϱ

φ ϖ

Ç
ϑ ϱ

φ ϖ

å ñ
ϑ ϱ

φ ϖ

ô ®
ϑ ϱ

φ ϖ

´ ∣∣∣∣ϑ ϱ

φ ϖ

∣∣∣∣ ∥∥∥∥ϑ ϱ

φ ϖ

∥∥∥∥
\begin{matrix}

\vartheta& \varrho\\\varphi& \varpi

\end{matrix}\quad

\begin{pmatrix}

\vartheta& \varrho\\\varphi& \varpi

\end{pmatrix}\quad

\begin{bmatrix}

\vartheta& \varrho\\\varphi& \varpi

\end{bmatrix}\quad

\begin{Bmatrix}

\vartheta& \varrho\\\varphi& \varpi

\end{Bmatrix}\quad

\begin{vmatrix}

\vartheta& \varrho\\\varphi& \varpi

\end{vmatrix}\quad

\begin{Vmatrix}

\vartheta& \varrho\\\varphi& \varpi

\end{Vmatrix}

To produce a small matrix suitable for use in text, use the smallmatrix

environment.

\begin{math}

\bigl( \begin{smallmatrix}

a&b\\ c&d

\end{smallmatrix} \bigr)

\end{math}

To show the effect of the matrix on the surrounding lines of a paragraph, we

put it here:
(
a b
c d

)
and follow it with enough text to ensure that there will be

at least one full line below the matrix.
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\hdotsfor{number} produces a row of dots in a matrix spanning the

given number of columns:

W (Φ) =

∥∥∥∥∥∥∥∥∥∥∥∥∥

φ

(φ1, ε1)
0 . . . 0

φkn2
(φ2, ε1)

φ

(φ2, ε2)
. . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φkn1

(φn, ε1)

φkn2
(φn, ε2)

. . .
φknn−1

(φn, εn−1)

φ

(φn, εn)

∥∥∥∥∥∥∥∥∥∥∥∥∥
\[W(\Phi)= \begin{Vmatrix}

\dfrac\varphi{(\varphi_1,\varepsilon_1)}&0&\dots&0\\

\dfrac{\varphi k_{n2}}{(\varphi_2,\varepsilon_1)}&

\dfrac\varphi{(\varphi_2,\varepsilon_2)}&\dots&0\\

\hdotsfor{5}\\

\dfrac{\varphi k_{n1}}{(\varphi_n,\varepsilon_1)}&

\dfrac{\varphi k_{n2}}{(\varphi_n,\varepsilon_2)}&\dots&

\dfrac{\varphi k_{n\,n-1}}{(\varphi_n,\varepsilon_{n-1})}&

\dfrac{\varphi}{(\varphi_n,\varepsilon_n)}

\end{Vmatrix}\]

The spacing of the dots can be varied through use of a square-bracket option,

for example, \hdotsfor[1.5]{3}. The number in square brackets will be used

as a multiplier; the normal value is 1.

9.18. The \substack command. The \substack command can be used

to produce a multiline subscript or superscript: for example

\sum_{\substack{0\le i\le m\\ 0<j<n}} P(i,j)

produces a two-line subscript underneath the sum:

(62)
∑

0≤i≤m
0<j<n

P (i, j)

A slightly more generalized form is the subarray environment which allows

you to specify that each line should be left-aligned instead of centered, as here: Maybe “. . . as
below”?

(63)
∑

0≤i≤m
0<j<n

P (i, j)

\sum_{\begin{subarray}{l}

0\le i\le m\\ 0<j<n

\end{subarray}}

P(i,j)
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9.19. Big-g-g delimiters. Here are some big delimiters, first in \normalsize:Å
Ey

∫ tε

0

Lx,yx(s)φ(x) ds

ã
\[\biggl(\mathbf{E}_{y}

\int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds

\biggr)

\]

and now in \Large size: Å
Ey

∫ tε

0

Lx,yx(s)φ(x) ds

ã
{\Large

\[\biggl(\mathbf{E}_{y}

\int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds

\biggr)

\]}
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l’Analyse, G. Choquet, M. Rogalski, J. Saint Raymond, at the Université Pierre
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