\documentclass[12pt]{article}      % Specifies the document class

% The preamble begins here.

%<-------------------------------------------Included Packages---------------------------------------------------->
%\usepackage[dvips]{epsfig}
	% for displaying pictures
%\usepackage[b]{esvect}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{ifthen}
\usepackage{cool}
\usepackage{makeidx}
\makeindex
%<-----------------------------------------End Included Packages-------------------------------------------------->


%<------------------------------------------Document Properties--------------------------------------------------->
\title{Content \LaTeXe}	% Declares the document's title.
\author{N. Setzer}	% Declares the author's name.
%\date{}	% Declares the date.  Aren't you glad you have that kind of power?
%\setlength{\topmargin}{-0.8in}
%\setlength{\topskip}{0.2in}    % between header and text
%\setlength{\textheight}{9.0in} % height of main text
%\setlength{\textwidth}{7.3in}    % width of text
%\setlength{\oddsidemargin}{-0.4in} % odd page left margin
%\setlength{\evensidemargin}{-0.4in} % even page left margin 
%<----------------------------------------End Document Properties------------------------------------------------->


%<----------------------------------------Modified LaTeX Command Definitions--------------------------------------->
\newcommand{\var}[1]{}
\newenvironment{declaration}{\hide}{}
\newcommand{\hide}[1]{}
\newenvironment{derivation}{\begin{eqnarray*}}{\end{eqnarray*}}
\newenvironment{der}{\begin{eqnarray*}}{\end{eqnarray*}}
%<--------------------------------------End Modified LaTeX Command Definitions------------------------------------->

%<-------------------------------------------Command Definitions--------------------------------------------------->
%%%%%%%%%%%%% Formatting
\newcommand{\headerRow}{\bf \textrm Command	& \bf \textrm Inline	& \bf \textrm Display	\\}
%%%%%%%%%%%%% Indexing
\newcommand{\bs}{\symbol{'134}}% backslash
\newcommand{\idxc}[2][]{\texttt{\bs#2}\index{#2#1@\texttt{\bs#2}#1}}
%<-----------------------------------------End Command Definitions------------------------------------------------->


%############################################Sectioning Templates###################################################

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\section{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%\subsection{}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%\subsubsection{}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%
%\subsubsubsection{}
%%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%   %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |
%\appendix
%   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |   %   |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


%##########################################End Sectioning Templates#################################################


\begin{document}             % End of preamble and beginning of text.

\maketitle


%%%%%%%%%%%%%% IMPORTANT: we can have seemingly UNLIMITE number of booleans !!!!!!
%%%%%%%%%%%%%% however, we can only create an 'array' of 746 of them

% STRING capacity exceeded---this just won't work the way you want it to.
%\newcounter{testing}
%\setcounter{testing}{0}
%\whiledo{\value{testing}<6430}%
%{%
%\addtocounter{testing}{1}%
%\newboolean{j\arabic{testing}}%
%}

% no errors but is not effective
%\newcounter{arrayTrav}
%\def\newarray#1#2{\def#1##1{%
%\ifthenelse{\equal{##1}{length}}
%	{%
%	#2
%	}%
%% Else
%\ifcase##1{0}
%\forLoop{1}{#2}{arrayTrav}%
%	{%
%	\or{0}
%	}%
%\fi
%}}
%\def\setval#1#2#3{%
%\def#1##1{%
%\ifcase##1%
%\forLoop{1}{#1{length}}{arrayTrav}
%	{%
%	\or
%	\ifthenelse{\value{arrayTrav}=#2}
%		{#3}
%		{#1{\arabic{arrayTrav}}}
%	}%
%\fi
%}}
%
%\newarray{\joker}{10}
%\joker{2}
%\setval{\joker}{2}{t}
%\joker{2}


%% Works but costs alot of counters and only allows integers and single characters
%\newcommand{\newarray}[3][0]{%
%\newcounter{length#2}%
%\setcounter{length#2}{#3}
%\newcounter{fill#2}
%\forLoop{1}{\value{length#2}}{fill#2}%
%	{%
%	\newcounter{values#2\arabic{fill#2}}
%	\setcounter{values#2\arabic{fill#2}}{#1}
%	}%
%}
%
%\newcommand{\newstring}[3][0]{%
%\newcounter{strlen#2}%
%\setcounter{strlen#2}{#3}
%\newcounter{charfill#2}
%\forLoop{1}{\value{strlen#2}}{charfill#2}%
%	{%
%	\newcounter{strchar#2\arabic{charfill#2}}
%	\setcounter{strchar#2\arabic{charfill#2}}{`#1}
%	}%
%}
%\newcommand{\setchar}[3]{\setcounter{strchar#1#2}{`#3}}
%\newcommand{\strchar}[2]{\char\value{strchar#1#2}}
%\newcommand{\setstr}[2]
%{%
%\forLoop{1}{\value{strlen#1}}{charfill#1}%
%	{%
%	}%
%}
%
%\newcommand{\setval}[3]{\setcounter{values#1#2}{#3}}
%\newcommand{\arrayval}[2]{\arabic{values#1#2}}
%
%\newarray{joker}{13}
%
%\arrayval{joker}{2}
%\setval{joker}{2}{3}
%\arrayval{joker}{2}
%\setval{joker}{3}{12}
%\arrayval{joker}{3}
%
%\newstring{string}{114}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Commands}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
\label{Section:Commands}
%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\subsection{Constants}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{center}
\begin{tabular}{ccc}
\headerRow
\idxc[ ($\sqrt{-1}$)]{I}	& $\I$			& $\displaystyle \I$			\\
\idxc[ (base of natural log)]{E}& $\E$			& $\displaystyle \E$			\\
\idxc{PI} 			& $\PI$			& $\displaystyle \PI$			\\
\idxc{GoldenRatio} 		& $\GoldenRatio$	& $\displaystyle \GoldenRatio$		\\
\idxc{EulerGamma} 		& $\EulerGamma$		& $\displaystyle \EulerGamma$		\\
\idxc{Catalan} 			& $\Catalan$		& $\displaystyle \Catalan$		\\
\idxc{Glaisher} 		& $\Glaisher$		& $\displaystyle \Glaisher$		\\
\idxc{Khinchin} 		& $\Khinchin$		& $\displaystyle \Khinchin$		\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Symbols}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{center}
\begin{tabular}{ccc}
\idxc{Infinity}				& $\Infinity$			& $\displaystyle \Infinity$		\\
\idxc{Indeterminant}			& $\Indeterminant$		& $\displaystyle \Indeterminant$	\\
\idxc{DirectedInfinity}\verb|{z}|	& $\DirectedInfinity{z}$	& $\displaystyle \DirectedInfinity{z}$	\\
\idxc{DirInfty}\verb|{z}|		& $\DirInfty{z}$		& $\displaystyle \DirInfty{z}$		\\
\idxc{ComplexInfinity}			& $\ComplexInfinity$		& $\displaystyle \ComplexInfinity$	\\
\idxc{CInfty}				& $\CInfty$			& $\displaystyle \CInfty$		\\
\end{tabular}
\end{center}








%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\subsection{}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Exponential and Logarithmic Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{center}
\begin{tabular}{ccc}
\headerRow
\idxc{Exp}\verb|{5x}| 			& $\Exp{5x}$		& $\displaystyle \Exp{5x}$		\\
\verb|\Style{ExpParen=b}|%
\Style{ExpParen=b}											\\
\idxc{Exp}\verb|{5x}| 			& $\Exp{5x}$		& $\displaystyle \Exp{5x}$		\\
\verb|\Style{ExpParen=br}|%
\Style{ExpParen=br}											\\
\idxc{Exp}\verb|{5x}| 			& $\Exp{5x}$		& $\displaystyle \Exp{5x}$		\\
\idxc{Log}\verb|{5}|			& $\Log{5}$		& $\displaystyle \Log{5}$		\\
\idxc{Log}\verb|[10]{5}| 		& $\Log[10]{5}$		& $\displaystyle \Log[10]{5}$		\\
\idxc{Log}\verb|[4]{5}|			& $\Log[4]{5}$		& $\displaystyle \Log[4]{5}$		\\
\verb|\Style{LogBaseESymb=log}|%
\Style{LogBaseESymb=log}										\\
\idxc{Log}\verb|{5}|			& $\Log{5}$		& $\displaystyle \Log{5}$		\\
\idxc{Log}\verb|[10]{5}| 		& $\Log[10]{5}$		& $\displaystyle \Log[10]{5}$		\\
\idxc{Log}\verb|[4]{5}|			& $\Log[4]{5}$		& $\displaystyle \Log[4]{5}$		\\
\verb|\Style{LogShowBase=always}|%
\Style{LogBaseESymb=ln}%
\Style{LogShowBase=always}										\\
\idxc{Log}\verb|{5}|			& $\Log{5}$		& $\displaystyle \Log{5}$		\\
\idxc{Log}\verb|[10]{5}| 		& $\Log[10]{5}$		& $\displaystyle \Log[10]{5}$		\\
\idxc{Log}\verb|[4]{5}|			& $\Log[4]{5}$		& $\displaystyle \Log[4]{5}$		\\
\verb|\Style{LogShowBase=at will}|%
\Style{LogShowBase=at will}										\\
\idxc{Log}\verb|{5}|			& $\Log{5}$		& $\displaystyle \Log{5}$		\\
\idxc{Log}\verb|[10]{5}| 		& $\Log[10]{5}$		& $\displaystyle \Log[10]{5}$		\\
\idxc{Log}\verb|[4]{5}|			& $\Log[4]{5}$		& $\displaystyle \Log[4]{5}$		\\
\verb|\Style{LogParen=p}|%
\Style{LogParen=p}											\\
\idxc{Log}\verb|[4]{5}|			& $\Log[4]{5}$		& $\displaystyle \Log[4]{5}$		\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Trigonometric Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Trigonometric Functions}

\begin{center}
\begin{tabular}{ccc}
%%%%%% Trigonometric Functions
\idxc{Sin}\verb|{x}|			& $\Sin{x}$		& $\displaystyle \Sin{x}$		\\
\idxc{Cos}\verb|{x}|			& $\Cos{x}$		& $\displaystyle \Cos{x}$		\\
\idxc{Tan}\verb|{x}|			& $\Tan{x}$		& $\displaystyle \Tan{x}$		\\
\idxc{Csc}\verb|{x}|			& $\Csc{x}$		& $\displaystyle \Csc{x}$		\\
\idxc{Sec}\verb|{x}|			& $\Sec{x}$		& $\displaystyle \Sec{x}$		\\
\idxc{Cot}\verb|{x}|			& $\Cot{x}$		& $\displaystyle \Cot{x}$		\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Inverse Trigonometric Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Trigonometric Functions!Inverse}

\begin{center}
\begin{tabular}{ccc}
%%%%%% Inverse Trigonometric Functions
\Style{ArcTrig=inverse}%
\verb|\Style{ArcTrig=inverse}| (default)%
													\\
\idxc{ArcSin}\verb|{x}|			& $\ArcSin{x}$		& $\displaystyle \ArcSin{x}$		\\
\idxc{ArcCos}\verb|{x}|			& $\ArcCos{x}$		& $\displaystyle \ArcCos{x}$		\\
\idxc{ArcTan}\verb|{x}|			& $\ArcTan{x}$		& $\displaystyle \ArcTan{x}$		\\
%
\Style{ArcTrig=arc}%
\verb|\Style{ArcTrig=arc}|%
													\\
\idxc{ArcSin}\verb|{x}|			& $\ArcSin{x}$		& $\displaystyle \ArcSin{x}$		\\
\idxc{ArcCos}\verb|{x}|			& $\ArcCos{x}$		& $\displaystyle \ArcCos{x}$		\\
\idxc{ArcTan}\verb|{x}|			& $\ArcTan{x}$		& $\displaystyle \ArcTan{x}$		\\
													\\
\idxc{ArcCsc}\verb|{x}|			& $\ArcCsc{x}$		& $\displaystyle \ArcCsc{x}$		\\
\idxc{ArcSec}\verb|{x}|			& $\ArcSec{x}$		& $\displaystyle \ArcSec{x}$		\\
\idxc{ArcCot}\verb|{x}|			& $\ArcCot{x}$		& $\displaystyle \ArcCot{x}$		\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Hyberbolic Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Hyperbolic Functions}

\begin{center}
\begin{tabular}{ccc}
%%%%%% Hyperbolic Functions
\idxc{Sinh}\verb|{x}|			& $\Sinh{x}$		& $\displaystyle \Sinh{x}$		\\
\idxc{Cosh}\verb|{x}|			& $\Cosh{x}$		& $\displaystyle \Cosh{x}$		\\
\idxc{Tanh}\verb|{x}|			& $\Tanh{x}$		& $\displaystyle \Tanh{x}$		\\
\idxc{Csch}\verb|{x}|			& $\Csch{x}$		& $\displaystyle \Csch{x}$		\\
\idxc{Sech}\verb|{x}|			& $\Sech{x}$		& $\displaystyle \Sech{x}$		\\
\idxc{Coth}\verb|{x}|			& $\Coth{x}$		& $\displaystyle \Coth{x}$		\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Inverse Hyberbolic Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Hyperbolic Functions!Inverse}

\begin{center}
\begin{tabular}{ccc}
%%%%%% Inverse Hyberbolic Functions
\idxc{ArcSinh}\verb|{x}|		& $\ArcSinh{x}$		& $\displaystyle \ArcSinh{x}$		\\
\idxc{ArcCosh}\verb|{x}|		& $\ArcCosh{x}$		& $\displaystyle \ArcCosh{x}$		\\
\idxc{ArcTanh}\verb|{x}|		& $\ArcTanh{x}$		& $\displaystyle \ArcTanh{x}$		\\
\idxc{ArcCsch}\verb|{x}|		& $\ArcCsch{x}$		& $\displaystyle \ArcCsch{x}$		\\
\idxc{ArcSech}\verb|{x}|		& $\ArcSech{x}$		& $\displaystyle \ArcSech{x}$		\\
\idxc{ArcCoth}\verb|{x}|		& $\ArcCoth{x}$		& $\displaystyle \ArcCoth{x}$		\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Product Logarithms}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Lambert Function}
\index{Lambert Function!Generalized}
\index{Generalized Lambert Function}
\index{Product Logarithms}
\index{Logarithms!Product}

\begin{center}
\begin{tabular}{ccc}
\headerRow
%%%%%%% Lambert Function
\idxc{LambertW}\verb|{z}|		& $\LambertW{z}$	& $\displaystyle \LambertW{z}$		\\
%%%%%%%% Lambert Function
\idxc{ProductLog}\verb|{z}|		& $\ProductLog{z}$	& $\displaystyle \ProductLog{z}$	\\
													\\

%%%%%%% Generalized Lambert Function
\idxc{LambertW}\verb|{k,z}|		& $\LambertW{k,z}$	& $\displaystyle \LambertW{k,z}$	\\
%%%%%%%% Generalized Lambert Function
\idxc{ProductLog}\verb|{k,z}|		& $\ProductLog{k,z}$	& $\displaystyle \ProductLog{k,z}$	\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Max and Min}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{center}
\begin{tabular}{ccc}
%%%%%% Max and Min
\idxc{Max}\verb|{1,2,3,4,5}|		& $\Max{1,2,3,4,5}$	& $\displaystyle \Max{1,2,3,4,5}$	\\
\idxc{Min}\verb|{1,2,3,4,5}|		& $\Min{1,2,3,4,5}$	& $\displaystyle \Min{1,2,3,4,5}$
\end{tabular}
\end{center}





%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\subsection{Bessel, Airy, and Struve Functions}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Bessel}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Bessel functions can be `renamed' with the \verb|\Style| tag.  For example, \verb|\Style{BesselYSymb=N}| yields \Style{BesselYSymb=N} $\BesselY{\nu}{x}$ \Style{BesselYSymb=Y}

\index{Bessel Functions}


\begin{center}
\begin{tabular}{ccc}
\headerRow
%%%%%% Bessel
% Bessel Function of the first Kind
\idxc{BesselJ}\verb|{0}{x}| 		& $\BesselJ{0}{x}$	& $\displaystyle \BesselJ{0}{x}$	\\
% Bessel Function of the second Kind
\idxc{BesselY}\verb|{0}{x}|		& $\BesselY{0}{x}$	& $\displaystyle \BesselY{0}{x}$	\\
% Modified Bessel Function of the first Kind
\idxc{BesselI}\verb|{0}{x}|		& $\BesselI{0}{x}$	& $\displaystyle \BesselI{0}{x}$	\\
% Modified Bessel Function of the second Kind
\idxc{BesselK}\verb|{0}{x}|		& $\BesselK{0}{x}$	& $\displaystyle \BesselK{0}{x}$	\\
\end{tabular}
\end{center}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Airy}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Airy Functions}

\begin{center}
\begin{tabular}{ccc}
%%%%%% Airy
\idxc{AiryAi}\verb|{x}|			& $\AiryAi{x}$		& $\displaystyle \AiryAi{x}$		\\
\idxc{AiryBi}\verb|{x}|			& $\AiryBi{x}$		& $\displaystyle \AiryBi{x}$		\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Struve}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Struve Functions}

\begin{center}
\begin{tabular}{ccc}
%%%%%% Struve
\idxc{StruveH}\verb|{\nu}{x}|	& $\StruveH{\nu}{x}$	& $\displaystyle \StruveH{\nu}{x}$	\\
\idxc{StruveL}\verb|{\nu}{x}|	& $\StruveL{\nu}{x}$	& $\displaystyle \StruveL{\nu}{x}$
\end{tabular}
\end{center}









%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\subsection{Integer Functions}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{center}
\begin{tabular}{ccc}
\headerRow
% Floor
\idxc{Floor}\verb|{x}|		& $\Floor{x}$		& $\displaystyle \Floor{x}$		\\
\idxc{Ceiling}\verb|{x}|	& $\Ceiling{x}$		& $\displaystyle \Ceiling{x}$		\\
\idxc{Round}\verb|{x}|		& $\Round{x}$		& $\displaystyle \Round{x}$		\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{int@\textrm{int}|see{\texttt{\bs iPart}}}
\index{frac@\textrm{frac}|see{\texttt{\bs fPart}}}

\begin{center}
\begin{tabular}{ccc}
\idxc{iPart}\verb|{x}|			& $\iPart{x}$		& $\displaystyle \iPart{x}$		\\
\idxc{IntegerPart}\verb|{x}|		& $\IntegerPart{x}$	& $\displaystyle \IntegerPart{x}$	\\
\idxc{fPart}\verb|{x}|			& $\fPart{x}$		& $\displaystyle \fPart{x}$		\\
\idxc{FractionalPart}\verb|{x}|		& $\FractionalPart{x}$	& $\displaystyle \FractionalPart{x}$	\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Greatest Common Divisor}
\index{Least Common Multiple}

\begin{center}
\begin{tabular}{ccc}
\verb|\Style{ModDisplay=mod}| (default)%
\Style{ModDisplay=mod}										\\
\idxc{Mod}\verb|{m}{n}|		& $\Mod{m}{n}$		& $\displaystyle \Mod{m}{n}$		\\
\verb|\Style{ModDisplay=bmod}|%
\Style{ModDisplay=bmod}										\\
\idxc{Mod}\verb|{m}{n}|		& $\Mod{m}{n}$		& $\displaystyle \Mod{m}{n}$		\\
\verb|\Style{ModDisplay=pmod}|%
\Style{ModDisplay=pmod}										\\
\idxc{Mod}\verb|{m}{n}|		& $\Mod{m}{n}$		& $\displaystyle \Mod{m}{n}$		\\
\verb|\Style{ModDisplay=pod}|%
\Style{ModDisplay=pod}										\\
\idxc{Mod}\verb|{m}{n}|		& $\Mod{m}{n}$		& $\displaystyle \Mod{m}{n}$		\\
												\\
\idxc{Quotient}\verb|{m}{n}|	& $\Quotient{m}{n}$	& $\displaystyle \Quotient{m}{n}$	\\
\idxc{GCD}\verb|{m, n}|		& $\GCD{m, n}$		& $\displaystyle \GCD{m, n}$		\\
\idxc{ExtendedGCD}\verb|{m}{n}|	& $\ExtendedGCD{m}{n}$	& $\displaystyle \ExtendedGCD{m}{n}$	\\
\idxc{EGCD}\verb|{m}{n}|	& $\EGCD{m}{n}$		& $\displaystyle \EGCD{m}{n}$		\\
\idxc{LCM}\verb|{m, n}|		& $\LCM{m, n}$		& $\displaystyle \LCM{m, n}$		\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Fibonacci Number}

\begin{center}
\begin{tabular}{ccc}
\idxc{Fibonacci}\verb|{\nu}|		& $\Fibonacci{\nu}$	& $\displaystyle \Fibonacci{\nu}$	\\
\idxc{Euler}\verb|{m}|			& $\Euler{m}$		& $\displaystyle \Euler{m}$		\\
\idxc{Bernoulli}\verb|{m}|		& $\Bernoulli{m}$	& $\displaystyle \Bernoulli{m}$		\\
\idxc{StirlingSOne}\verb|{n}{m}|	& $\StirlingSOne{n}{m}$	& $\displaystyle \StirlingSOne{n}{m}$	\\
\idxc{StirlingSTwo}\verb|{n}{m}|	& $\StirlingSTwo{n}{m}$	& $\displaystyle \StirlingSTwo{n}{m}$	\\
\idxc{PartitionsP}\verb|{n}|		& $\PartitionsP{n}$	& $\displaystyle \PartitionsP{n}$	\\
\idxc{PartitionsQ}\verb|{n}|		& $\PartitionsQ{n}$	& $\displaystyle \PartitionsQ{n}$	\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{center}
\begin{tabular}{ccc}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\idxc{DiscreteDelta}\verb|{n, m}|	& $\DiscreteDelta{n, m}$	& $\displaystyle \DiscreteDelta{n, m}$
													\\
\idxc{KroneckerDelta}\verb|{n m}|	& $\KroneckerDelta{n m}$	& $\displaystyle \KroneckerDelta{n m}$
													\\
\idxc{KroneckerDelta}\verb|[d]{n m}|	& $\KroneckerDelta[d]{n m}$	& $\displaystyle \KroneckerDelta[d]{n m}$
													\\
\idxc{LeviCivita}\verb|{i j k}|		& $\LeviCivita{i j k}$		& $\displaystyle \LeviCivita{i j k}$
													\\
\idxc{LeviCivita}\verb|[d]{i j k}|	& $\LeviCivita[d]{i j k}$	& $\displaystyle \LeviCivita[d]{i j k}$
													\\
\idxc{Signature}\verb|{i j k}|		& $\Signature{i j k}$		& $\displaystyle \Signature{i j k}$
													\\
\verb|\Style{LeviCivitaIndicies=up}|%
\Style{LeviCivitaIndicies=up}										\\
\idxc{LeviCivita}\verb|[d]{i j k}|	& $\LeviCivita[d]{i j k}$	& $\displaystyle \LeviCivita[d]{i j k}$
													\\
\verb|\Style{LeviCivitaIndicies=local}|%
\Style{LeviCivitaIndicies=local}										\\
\idxc{LeviCivita}\verb|[d]{i j k}|	& $\LeviCivita[d]{i j k}$	& $\displaystyle \LeviCivita[d]{i j k}$
													\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\subsection{Polynomials}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Polynomials can be `renamed' with the \verb|\Style| command:

\begin{center}
\verb|\Style{|	$\langle\mbox{\textit{Polynomial command} }\rangle$%
		\verb|Symb=|$\langle\mbox{\textit{Symbol} }\rangle$%
	\verb|}|
\end{center}

As in \verb|\Style{HermiteHSymb=h,LegendrePSymb=p}| \verb|$\HermiteH{n}{x}$| \verb|$\LegendreP{n,x}$| yielding:
\Style{HermiteHSymb=h,LegendrePSymb=p} $\HermiteH{n}{x}$ $\LegendreP{n,x}$
\Style{HermiteHSymb=H,LegendrePSymb=P}

\index{Polynomials!Hermite}
\index{Polynomials!Laugerre}
\index{Polynomials!Legendre}
\index{Polynomials!Chebyshev}
\index{Polynomials!Jacobi}
\index{Polynomials!Gegenbauer}
\index{Polynomials!Cyclotomic}
\index{Polynomials!Fibonacci}
\index{Polynomials!Euler}
\index{Polynomials!Bernoulli}
\index{Generalized Laugerre}

\begin{center}
\begin{tabular}{ccc}
\headerRow
% Hermite H
\idxc{HermiteH}\verb|{n}{x}|		& $\HermiteH{n}{x}$	& $\displaystyle \HermiteH{n}{x}$	\\
% Laugerre L
\idxc{LaugerreL}\verb|{n,x}|		& $\LaugerreL{n,x}$	& $\displaystyle \LaugerreL{n,x}$	\\
% Legendre P
\idxc{LegendreP}\verb|{n,x}|		& $\LegendreP{n,x}$	& $\displaystyle \LegendreP{n,x}$	\\
% Chebyshev T
\idxc{ChebyshevT}\verb|{n}{x}|		& $\ChebyshevT{n}{x}$	& $\displaystyle \ChebyshevT{n}{x}$	\\
% Chebyshev U
\idxc{ChebyshevU}\verb|{n}{x}|		& $\ChebyshevU{n}{x}$	& $\displaystyle \ChebyshevU{n}{x}$	\\
% Jacobi P
\idxc{JacobiP}\verb|{n}{a}{b}{x}|	& $\JacobiP{n}{a}{b}{x}$& $\displaystyle \JacobiP{n}{a}{b}{x}$	\\
													\\
% Associated Legendre P
\idxc{AssocLegendreP}\verb|{\ell}{m}{x}|
					& $\AssocLegendreP{\ell}{m}{x}$
								& $\displaystyle \AssocLegendreP{\ell}{m}{x}$
													\\
% Associated Legendre Q
\idxc{AssocLegendreQ}\verb|{\ell}{m}{x}|
					& $\AssocLegendreQ{\ell}{m}{x}$
								& $\displaystyle \AssocLegendreQ{\ell}{m}{x}$
													\\
% Generalized Laugerre Polynomial
\idxc{LaugerreL}\verb|{n,\lambda,x}|
					& $\LaugerreL{n,\lambda,x}$
								& $\displaystyle \LaugerreL{n,\lambda,x}$
													\\
% Gegenbauer Polynomial
\idxc{GegenbauerC}\verb|{n}{\lambda}{x}|
					& $\GegenbauerC{n}{\lambda}{x}$
								& $\displaystyle \GegenbauerC{n}{\lambda}{x}$
													\\
% Spherical Harmonics
\idxc{SphericalHarmY}\verb|{n}{m}{\theta}{\phi}|
					& $\SphericalHarmY{n}{m}{\theta}{\phi}$
								& $\displaystyle \SphericalHarmY{n}{m}{\theta}{\phi}$
													\\
													\\
% Cyclotomic
\idxc{CyclotomicC}\verb|{n}{x}|		& $\CyclotomicC{n}{x}$	& $\displaystyle \CyclotomicC{n}{x}$	\\
% Fibonacci
\idxc{FibonacciF}\verb|{n}{x}|		& $\FibonacciF{n}{x}$	& $\displaystyle \FibonacciF{n}{x}$	\\
% Euler
\idxc{EulerE}\verb|{n}{x}|		& $\EulerE{n}{x}$	& $\displaystyle \EulerE{n}{x}$		\\
% Bernoulli
\idxc{BernoulliB}\verb|{n}{x}|		& $\BernoulliB{n}{x}$	& $\displaystyle \BernoulliB{n}{x}$	\\
\end{tabular}
\end{center}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\subsection{Gamma, Beta, and Error Functions}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Factorials}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Gamma, Beta, Error Functions
\begin{center}

\begin{tabular}{ccc}
\headerRow
%%%%%% Factorial
\idxc{Factorial}\verb|{n}|		& $\Factorial{n}$	& $\displaystyle \Factorial{n}$		\\
\idxc{DblFactorial}\verb|{n}|		& $\DblFactorial{n}$	& $\displaystyle \DblFactorial{n}$	\\
\idxc{Binomial}\verb|{n}{k}|		& $\Binomial{n}{k}$ 	& $\displaystyle \Binomial{n}{k}$	\\
\idxc{Multinomial}\verb|{1,2,3,4}|	& $\Multinomial{1,2,3,4}$
								& $\displaystyle \Multinomial{1,2,3,4}$	\\
\end{tabular}

\vspace{0.25cm}

\begin{tabular}{c}
\idxc{Multinomial}\verb|{n_1, n_2, \ldots, n_m}|
\\
	\begin{tabular}{cc}
	{\bf Inline:}	& $\Multinomial{n_1,n_2,\ldots,n_m}$			\\
	{\bf Display:}	& $\displaystyle \Multinomial{n_1, n_2, \ldots, n_m}$	\\
	\end{tabular}
\\
\\
\end{tabular}

\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Gamma Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Incomplete Gamma Function}
\index{Gamma Functions}
\index{Gamma Functions!Inverse}

\begin{center}
\begin{tabular}{ccc}
%%%%%% Gamma Functions
\idxc{GammaFunc}\verb|{x}|		& $\GammaFunc{x}$	& $\displaystyle \GammaFunc{x}$		\\
% incomplete Gamma function G(a,x)
\idxc{IncGamma}\verb|{a}{x}|		& $\IncGamma{a}{x}$	& $\displaystyle \IncGamma{a}{x}$	\\
% Generalized Incomplete Gamma G(a, x, y)
\idxc{GenIncGamma}\verb|{a}{x}{y}|	& $\GenIncGamma{a}{x}{y}$
								& $\displaystyle \GenIncGamma{a}{x}{y}$	\\
% Regularized Incomplete Gamma Q(a,x)
\idxc{RegIncGamma}\verb|{a}{x}|		& $\RegIncGamma{a}{x}$	& $\displaystyle \RegIncGamma{a}{x}$	\\
% Inverse of Regularized Incomplete Gamma InvQ(a,x)
% \ArcRegIncGamma
\idxc{RegIncGammaInv}\verb|{a}{x}|	& $\RegIncGammaInv{a}{x}$
								& $\displaystyle \RegIncGammaInv{a}{x}$	\\
% Generalized Regularized Incomplete Gamma Q(a, x, y)
\idxc{GenRegIncGamma}\verb|{a}{x}{y}|
					& $\GenRegIncGamma{a}{x}{y}$
								& $\displaystyle \GenRegIncGamma{a}{x}{y}$
													\\
% Inverse of Gen. Reg. Incomplete Gamma InvQ(a, x, y)
% \ArcGenRegIncGamma
\idxc{GenRegIncGammaInv}\verb|{a}{x}{y}|
					& $\GenRegIncGammaInv{a}{x}{y}$
								& $\displaystyle \GenRegIncGammaInv{a}{x}{y}$
													\\
% Pochhammer Symbol (a)_n
\idxc{Pochhammer}\verb|{a}{n}|		& $\Pochhammer{a}{n}$	& $\displaystyle \Pochhammer{a}{n}$	\\
% Log Gamma Func
\idxc{LogGamma}\verb|{x}|		& $\LogGamma{x}$	& $\displaystyle \LogGamma{x}$		\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Derivatives of Gamma Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Derivatives!of Gamma Functions}
\index{Beta Functions}
\index{Beta Functions!Inverse}

\begin{center}
\begin{tabular}{ccc}
%%%%%% Derivative of Gamma Functions
% Digamma function
\idxc{DiGamma}\verb|{x}|		& $\DiGamma{x}$		& $\displaystyle \DiGamma{x}$		\\
% PolyGamma function psi^(\nu) (x)
\idxc{PolyGamma}\verb|{\nu}{x}|		& $\PolyGamma{\nu}{x}$	& $\displaystyle \PolyGamma{\nu}{x}$	\\
% Harmonic Number H_x
\idxc{HarmNum}\verb|{x}|		& $\HarmNum{x}$		& $\displaystyle \HarmNum{x}$		\\
% Generalized Harmonic Number H_x^(r)
\idxc{HarmNum}\verb|{x,r}|		& $\HarmNum{x,r}$	& $\displaystyle \HarmNum{x,r}$		\\
% Beta Function B(a, b)
\idxc{Beta}\verb|{a,b}|			& $\Beta{a,b}$		& $\displaystyle \Beta{a,b}$		\\
% Incomplete Beta Function B_z(a, b)
\idxc{IncBeta}\verb|{z}{a}{b}|		& $\IncBeta{z}{a}{b}$	& $\displaystyle \IncBeta{z}{a}{b}$	\\
% Generalized Inc. Beta Func. B_(x,y) (a, b)
\idxc{GenIncBeta}\verb|{x}{y}{a}{b}|
					& $\GenIncBeta{x}{y}{a}{b}$
								& $\displaystyle \GenIncBeta{x}{y}{a}{b}$
													\\
% Regularized Incomplete Beta Function I_z(a,b)
\idxc{RegIncBeta}\verb|{z}{a}{b}|	& $\RegIncBeta{z}{a}{b}$
								& $\displaystyle \RegIncBeta{z}{a}{b}$	\\
% Inverse of Reg. Incomplete Beta Function InvI_z(a,b)
% \ArcRegIncBeta
\idxc{RegIncBetaInv}\verb|{z}{a}{b}|
					& $\RegIncBetaInv{z}{a}{b}$
								& $\displaystyle \RegIncBetaInv{z}{a}{b}$
													\\
% Gen. Regularized Inc. Beta Func. I_(x,y) (a, b)
\idxc{GenRegIncBeta}\verb|{x}{y}{a}{b}|
					& $\GenRegIncBeta{x}{y}{a}{b}$
								& $\displaystyle \GenRegIncBeta{x}{y}{a}{b}$
													\\
% Inv. of Gen. Reg. Inc. Beta InvI_(x,y) (a, b)
%\ArcGenRegIncBeta
\idxc{GenRegIncBetaInv}\verb|{x}{y}{a}{b}|
					& $\GenRegIncBetaInv{x}{y}{a}{b}$
								& $\displaystyle \GenRegIncBetaInv{x}{y}{a}{b}$
													\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Error Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Error Functions}
\index{Error Functions!Inverse}

\begin{center}
\begin{tabular}{ccc}
%%%%%% Error Functions
% Error Function
\idxc{Erf}\verb|{x}|			& $\Erf{x}$		& $\displaystyle \Erf{x}$		\\
% Inverse of Error Function
%\ArcErf
\idxc{InvErf}\verb|{x}|			& $\ErfInv{x}$		& $\displaystyle \ErfInv{x}$		\\
% Generalized Error Function
\idxc{GenErf}\verb|{x}|{y}		& $\GenErf{x}{y}$	& $\displaystyle \GenErf{x}{y}$		\\
% Inverse of Generalized Error Function
%\ArcGenErf
\idxc{GenErfInv}\verb|{x}{y}|		& $\GenErfInv{x}{y}$	& $\displaystyle \GenErfInv{x}{y}$	\\
% Complimentary Error Function
\idxc{Erfc}\verb|{x}|			& $\Erfc{x}$		& $\displaystyle \Erfc{x}$		\\
% Inverse of Complimentary Error Function
% \ArcErfc
\idxc{ErfcInv}\verb|{x}|		& $\ErfcInv{x}$		& $\displaystyle \ErfcInv{x}$		\\
% Imaginary Error Function
\idxc{Erfi}\verb|{x}|			& $\Erfi{x}$		& $\displaystyle \Erfi{x}$		\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Fresnel Integrals}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Fresnel Integrals}
\index{Integrals!Fresnel}

\begin{center}
\begin{tabular}{ccc}
%%%%%% Fresnel
\idxc{FresnelS}\verb|{x}|		& $\FresnelS{x}$	& $\displaystyle \FresnelS{x}$		\\
\idxc{FresnelC}\verb|{x}|		& $\FresnelC{x}$	& $\displaystyle \FresnelC{x}$		\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Exponential Integrals}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Exponential Integrals}
\index{Integrals!Exponential}

\begin{center}
\begin{tabular}{ccc}
%%%%%% Exponential Integrals
% Exponential Integral E_\nu (x)
\idxc{ExpIntE}\verb|{\nu}{x}|		& $\ExpIntE{\nu}{x}$	& $\displaystyle \ExpIntE{\nu}{x}$	\\
% Exponential Integral Ei(x)
\idxc{ExpIntEi}\verb|{x}|		& $\ExpIntEi{x}$	& $\displaystyle \ExpIntEi{x}$		\\
% Logarithmic Integral li(x)
\idxc{LogInt}\verb|{x}|			& $\LogInt{x}$		& $\displaystyle \LogInt{x}$		\\
% Sine Integral
\idxc{SinInt}\verb|{x}|			& $\SinInt{x}$		& $\displaystyle \SinInt{x}$		\\
% Cosine Integral
\idxc{CosInt}\verb|{x}|			& $\CosInt{x}$		& $\displaystyle \CosInt{x}$		\\
% Hyperbolic Sine Integral
\idxc{SinhInt}\verb|{x}|		& $\SinhInt{x}$		& $\displaystyle \SinhInt{x}$		\\
% Hyperbolic Cosine Integral
\idxc{CoshInt}\verb|{x}|		& $\CoshInt{x}$		& $\displaystyle \CoshInt{x}$		\\
\end{tabular}
\end{center}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\subsection{Hypergeometric Functions}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Hypergeometric Function}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Hypergeometric Functions}

\begin{center}
\begin{tabular}{c}
\idxc{Hypergeometric}\verb|{0}{0}{}{}{x}|
\\
	\begin{tabular}{cc}
	$\Hypergeometric{0}{0}{}{}{x}$		& $\displaystyle \Hypergeometric{0}{0}{}{}{x}$		\\
	\end{tabular}
\\
\\
\idxc{Hypergeometric}\verb|{0}{1}{}{b}{x}|
\\
	\begin{tabular}{cc}
	$\Hypergeometric{0}{1}{}{b}{x}$		& $\displaystyle \Hypergeometric{0}{1}{}{b}{x}$		\\
	\end{tabular}
\\
\\
\idxc{Hypergeometric}\verb|{1}{1}{a}{b}{x}|
\\
	\begin{tabular}{cc}
	$\Hypergeometric{1}{1}{a}{b}{x}$	& $\displaystyle \Hypergeometric{1}{1}{a}{b}{x}$	\\
	\end{tabular}
\\
\\
\idxc{Hypergeometric}\verb|{1}{1}{1}{1}{x}|
\\
	\begin{tabular}{cc}
	$\Hypergeometric{1}{1}{1}{1}{x}$	& $\displaystyle \Hypergeometric{1}{1}{1}{1}{x}$	\\
	\end{tabular}
\\
\\
\idxc{Hypergeometric}\verb|{3}{5}{a}{b}{x}|
\\
	\begin{tabular}{cc}
	$\Hypergeometric{3}{5}{a}{b}{x}$	& $\displaystyle \Hypergeometric{3}{5}{a}{b}{x}$	\\
	\end{tabular}
\\
\\
\idxc{Hypergeometric}\verb|{3}{5}{1,2,3}{1,2,3,4,5}{x}|
\\
	\begin{tabular}{cc}
	$\Hypergeometric{3}{5}{1,2,3}{1,2,3,4,5}{x}$	& $\displaystyle \Hypergeometric{3}{5}{1,2,3}{1,2,3,4,5}{x}$
													\\
	\end{tabular}
\\
\\
\idxc{Hypergeometric}\verb|{p}{5}{a}{b}{x}|
\\
	\begin{tabular}{cc}
	$\Hypergeometric{p}{5}{a}{b}{x}$	& $\displaystyle \Hypergeometric{p}{5}{a}{b}{x}$	\\
	\end{tabular}
\\
\\
\idxc{Hypergeometric}\verb|{p}{3}{a}{1,2,3}{x}|
\\
	\begin{tabular}{cc}
	$\Hypergeometric{p}{3}{a}{1,2,3}{x}$	$\displaystyle \Hypergeometric{p}{3}{a}{1,2,3}{x}$	\\
	\end{tabular}
\\
\\
\idxc{Hypergeometric}\verb|{p}{q}{a}{b}{x}|
\\
	\begin{tabular}{cc}
	$\Hypergeometric{p}{q}{a}{b}{x}$	& $\displaystyle \Hypergeometric{p}{q}{a}{b}{x}$	\\
							
	\end{tabular}
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Regularized Hypergeometric Function}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Hypergeometric Functions!Regularized}

\begin{center}
\begin{tabular}{c}
\idxc{RegHypergeometric}\verb|{0}{0}{}{}{x}|
\\
	\begin{tabular}{cc}
	$\RegHypergeometric{0}{0}{}{}{x}$		& $\displaystyle \RegHypergeometric{0}{0}{}{}{x}$	\\
	\end{tabular}
\\
\\
\idxc{RegHypergeometric}\verb|{0}{1}{}{b}{x}|
\\
	\begin{tabular}{cc}
	$\RegHypergeometric{0}{1}{}{b}{x}$		& $\displaystyle \RegHypergeometric{0}{1}{}{b}{x}$	\\
	\end{tabular}
\\
\\
\idxc{RegHypergeometric}\verb|{3}{5}{a}{b}{x}|
\\
	\begin{tabular}{cc}
	$\RegHypergeometric{3}{5}{a}{b}{x}$		& $\displaystyle \RegHypergeometric{3}{5}{a}{b}{x}$	\\
	\end{tabular}
\\
\\
\idxc{RegHypergeometric}\verb|{3}{5}{1,2,3}{1,2,3,4,5}{x}|
\\
	\begin{tabular}{cc}
	$\RegHypergeometric{3}{5}{1,2,3}{1,2,3,4,5}{x}$	& $\displaystyle \RegHypergeometric{3}{5}{1,2,3}{1,2,3,4,5}{x}$
														\\
	\end{tabular}
\\
\\
\idxc{RegHypergeometric}\verb|{p}{5}{a}{b}{x}|
\\
	\begin{tabular}{cc}
	$\RegHypergeometric{p}{5}{a}{b}{x}$		& $\displaystyle \RegHypergeometric{p}{5}{a}{b}{x}$	\\
	\end{tabular}
\\
\\
\idxc{RegHypergeometric}\verb|{p}{3}{a}{1,2,3}{x}|
\\
	\begin{tabular}{cc}
	$\RegHypergeometric{p}{3}{a}{1,2,3}{x}$		& $\displaystyle \RegHypergeometric{p}{3}{a}{1,2,3}{x}$	\\
	\end{tabular}
\\
\\
\idxc{RegHypergeometric}\verb|{p}{q}{a}{b}{x}|
\\
	\begin{tabular}{cc}
	$\RegHypergeometric{p}{q}{a}{b}{x}$		& $\displaystyle \RegHypergeometric{p}{q}{a}{b}{x}$	\\
							
	\end{tabular}
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Meijer G-Function}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Meijer G-Function}
\index{G-Function}

\begin{center}
\begin{tabular}{c}
\idxc{MeijerG}\verb|[a,b]{n}{p}{m}{q}{x}| \vspace{0.10cm}
\\
	\begin{tabular}{cc}
		$\MeijerG[a,b]{n}{p}{m}{q}{x}$	
						& $\displaystyle \MeijerG[a,b]{n}{p}{m}{q}{x}$	
	\end{tabular}
\\
\end{tabular}

\vspace{0.5cm}

\begin{tabular}{c}
\idxc{MeijerG}\verb|{1,2,3,4}{5,6}{3,6,9}{12,15,18,21,24}{x}| \vspace{0.10cm}
\\
	\begin{tabular}{cc}
		$\MeijerG{1,2,3,4}{5,6}{3,6,9}{12,15,18,21,24}{x}$	
						& $\displaystyle \MeijerG{1,2,3,4}{5,6}{3,6,9}{12,15,18,21,24}{x}$	
	\end{tabular}
\\
\\
\idxc{MeijerG}\verb|[a,b]{4}{6}{3}{8}{x}| \vspace{0.10cm}
\\
	\begin{tabular}{cc}
		$\MeijerG[a,b]{4}{6}{3}{8}{x}$	
						& $\displaystyle \MeijerG[a,b]{4}{6}{3}{8}{x}$	
													\\
	\end{tabular}
\\
\\
\idxc{MeijerG}\verb|[a,b]{4}{p}{3}{8}{x}| \vspace{0.10cm}
\\
	\begin{tabular}{cc}
		$\MeijerG[a,b]{4}{p}{3}{8}{x}$	
						& $\displaystyle \MeijerG[a,b]{4}{p}{3}{8}{x}$	
													\\
	\end{tabular}
\\
\\
\idxc{MeijerG}\verb|[a,b]{n}{p}{3}{8}{x}| \vspace{0.10cm}
\\
	\begin{tabular}{cc}
		$\MeijerG[a,b]{n}{p}{3}{8}{x}$	
						& $\displaystyle \MeijerG[a,b]{n}{p}{3}{8}{x}$	
													\\
	\end{tabular}
\\
\end{tabular}

\begin{tabular}{c}
\idxc{MeijerG}\verb|[a]{4}{6}{3,6,9}{12,15,18,21,24}{x}| \vspace{0.10cm}
\\
	\begin{tabular}{cc}
		$\MeijerG[a]{4}{6}{3,6,9}{12,15,18,21,24}{x}$	
						& $\displaystyle \MeijerG[a]{4}{6}{3,6,9}{12,15,18,21,24}{x}$	
													\\
	\end{tabular}
\\
\\
\idxc{MeijerG}\verb|[a]{4}{p}{3,6,9}{12,15,18,21,24}{x}| \vspace{0.10cm}
\\
	\begin{tabular}{cc}
		$\MeijerG[a]{4}{p}{3,6,9}{12,15,18,21,24}{x}$	
						& $\displaystyle \MeijerG[a]{4}{p}{3,6,9}{12,15,18,21,24}{x}$	
													\\
	\end{tabular}
\\
\\
\idxc{MeijerG}\verb|[a]{n}{6}{3,6,9}{12,15,18,21,24}{x}| \vspace{0.10cm}
\\
	\begin{tabular}{cc}
		$\MeijerG[a]{n}{6}{3,6,9}{12,15,18,21,24}{x}$	
						& $\displaystyle \MeijerG[a]{n}{6}{3,6,9}{12,15,18,21,24}{x}$	
													\\
	\end{tabular}
\\
\\
\idxc{MeijerG}\verb|[a]{n}{p}{3,6,9}{12,15,18,21,24}{x}| \vspace{0.10cm}
\\
	\begin{tabular}{cc}
		$\MeijerG[a]{n}{p}{3,6,9}{12,15,18,21,24}{x}$	
						& $\displaystyle \MeijerG[a]{n}{p}{3,6,9}{12,15,18,21,24}{x}$	
													\\
	\end{tabular}
\\
\end{tabular}

\begin{tabular}{c}
\idxc{MeijerG}\verb|[,b]{1,2,3,4}{5,6}{3}{8}{x}| \vspace{0.10cm}
\\
	\begin{tabular}{cc}
		$\MeijerG[,b]{1,2,3,4}{5,6}{3}{8}{x}$	
						& $\displaystyle \MeijerG[,b]{1,2,3,4}{5,6}{3}{8}{x}$	
													\\
	\end{tabular}
\\
\\
\idxc{MeijerG}\verb|[,b]{1,2,3,4}{5,6}{3}{q}{x}| \vspace{0.10cm}
\\
	\begin{tabular}{cc}
		$\MeijerG[,b]{1,2,3,4}{5,6}{3}{q}{x}$	
						& $\displaystyle \MeijerG[,b]{1,2,3,4}{5,6}{3}{q}{x}$	
													\\
	\end{tabular}
\\
\\
\idxc{MeijerG}\verb|[,b]{1,2,3,4}{5,6}{m}{q}{x}| \vspace{0.10cm}
\\
	\begin{tabular}{cc}
		$\MeijerG[,b]{1,2,3,4}{5,6}{m}{q}{x}$	
						& $\displaystyle \MeijerG[,b]{1,2,3,4}{5,6}{m}{q}{x}$	
													\\
	\end{tabular}
\\
\\
\end{tabular}

\index{Generalized Meijer G-Function}
\index{Meijer G-Function!Generalized}

\begin{tabular}{c}
\idxc{MeijerG}\verb|[a,b]{n}{p}{m}{q}{x, r}| \vspace{0.10cm}
\\
	\begin{tabular}{cc}
		$\MeijerG[a,b]{n}{p}{m}{q}{x, r}$	
						& $\displaystyle \MeijerG[a,b]{n}{p}{m}{q}{x, r}$	
	\end{tabular}
\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Appell Hypergeometric Function $F_1$}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Appell Hypergeometric Function}
\index{Hypergeometric Functions!Appell}

\begin{center}
\begin{tabular}{c}
\idxc{AppellFOne}\verb|{a}{b_1, b_2}{c}{x, y}|
\\
	\begin{tabular}{cc}
	$\AppellFOne{a}{b_1,b_2}{c}{x,y}$	& $\displaystyle \AppellFOne{a}{b_1, b_2}{c}{x, y}$	\\
	\end{tabular}
\end{tabular}
\end{center}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Tricomi Confluent Hypergeometric Function}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Tricomi Confluent Hypergeometric Function}
\index{Hypergeometric Functions!Tricomi Confluent}

\begin{center}
\begin{tabular}{ccc}
\headerRow
\idxc{HypergeometricU}\verb|{a}{b}{x}|
				& $\HypergeometricU{a}{b}{x}$	
							& $\displaystyle \HypergeometricU{a}{b}{x}$	\\
\end{tabular}
\end{center}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Angular Momentum Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Clebsch-Gordon Coefficients}
\index{6-j Symbol}
\index{Six-j Symbol@6-j Symbol}
\index{Racah 6-j Symbol}
\index{3-j Symbol}
\index{Three-j Symbol@3-j Symbol}
\index{Wigner 3-j Symbol}


\begin{center}
\begin{tabular}{c}
\idxc{ClebschGordon}\verb|{j_1,m_1}{j_2,m_2}{j,m}|
\\
	\begin{tabular}{cc}
	$\ClebschGordon{j_1, m_1}{j_2, m_2}{j, m}$	& $\displaystyle \ClebschGordon{j_1, m_1}{j_2, m_2}{j, m}$
													\\
	\end{tabular}
\\
\\
\idxc{SixJSymbol}\verb|{j_1,j_2,j_3}{j_4,j_5,j_6}|
\\
	\begin{tabular}{cc}
	$\SixJSymbol{j_1,j_2,j_3}{j_4,j_5,j_6}$		& $\displaystyle \SixJSymbol{j_1,j_2,j_3}{j_4,j_5,j_6}$
													\\
	\end{tabular}
\\
\\
\idxc{ThreeJSymbol}\verb|{j_1,m_1}{j_2,m_2}{j_3,m_3}|
\\
	\begin{tabular}{cc}
	$\ThreeJSymbol{j_1,m_1}{j_2,m_2}{j_3,m_3}$	& $\displaystyle \ThreeJSymbol{j_1,m_1}{j_2,m_2}{j_3,m_3}$
													\\
	\end{tabular}
\end{tabular}
\end{center}









%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\subsection{Elliptic Integrals}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Elliptic!Integrals}
\index{Integrals!Elliptic}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Complete Elliptic Integrals}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Complete Elliptic Integrals}
\index{Integrals!Elliptic!Complete}

\begin{center}
\begin{tabular}{ccc}
\headerRow
%%%%%% Complete Elliptic Integrals
% Complete Elliptic Integral of the First Kind
\idxc{EllipticK}\verb|{x}|		& $\EllipticK{x}$	& $\displaystyle \EllipticK{x}$		\\
% Complete Elliptic Integral of the Second Kind
\idxc{EllipticE}\verb|{x}|		& $\EllipticE{x}$	& $\displaystyle \EllipticE{x}$		\\
% Complete Elliptic Integral of the Third Kind
\idxc{EllipticPi}\verb|{n,m}|		& $\EllipticPi{n,m}$	& $\displaystyle \EllipticPi{n,m}$	\\
\end{tabular}
\end{center}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Incomplete Elliptic Integrals}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Incomplete Elliptic Integrals}
\index{Integrals!Elliptic!Incomplete}

\begin{center}
\begin{tabular}{ccc}
\headerRow
%%%%%% Incomplete Elliptic Integrals
% Incomplete Elliptic Integral of the First Kind
\idxc{IncEllipticF}\verb|{x}{m}|	& $\IncEllipticF{x}{m}$	& $\displaystyle \IncEllipticF{x}{m}$	\\
% Incomplete Elliptic Integral of the Second Kind
\idxc{IncEllipticE}\verb|{x}{m}|	& $\IncEllipticE{x}{m}$	& $\displaystyle \IncEllipticE{x}{m}$	\\
% Complete Elliptic Integral of the Third Kind
\idxc{IncEllipticPi}\verb|{n}{x}{m}|
					& $\IncEllipticPi{n}{x}{m}$	
								& $\displaystyle \IncEllipticPi{n}{x}{m}$
													\\
\idxc{JacobiZeta}\verb|{x}{m}|	& $\JacobiZeta{x}{m}$	& $\displaystyle \JacobiZeta{x}{m}$	\\
\end{tabular}
\end{center}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\subsection{Elliptic Functions}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Elliptic!Functions}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Jacobi Theta Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Theta Functions!Jacobi}
\index{Jacobi Theta Functions}

\begin{center}
\begin{tabular}{ccc}
\headerRow
%%%%%% Jacobi Theta Functions
% Jacobi Theta 1 .. 4
\idxc{EllipticTheta}\verb|{1}{x}{q}|
					& $\EllipticTheta{1}{x}{q}$
								& $\displaystyle \EllipticTheta{1}{x}{q}$
													\\
% Jacobi Theta 1 ... 4 (Alternate Notation)
\idxc{JacobiTheta}\verb|{1}{x}{q}|	& $\JacobiTheta{1}{x}{q}$
								& $\displaystyle \JacobiTheta{1}{x}{q}$	\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Neville Theta Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Theta Functions!Neville}
\index{Neville Theta Functions}

\begin{center}
\begin{tabular}{ccc}
\headerRow
%%%%%% Neville Theta Functions
% Neville Theta D
\idxc{NevilleThetaC}\verb|{x}{m}|	& $\NevilleThetaC{x}{m}$
								& $\displaystyle \NevilleThetaC{x}{m}$	\\
\idxc{NevilleThetaD}\verb|{x}{m}|	& $\NevilleThetaD{x}{m}$
								& $\displaystyle \NevilleThetaD{x}{m}$	\\
\idxc{NevilleThetaN}\verb|{x}{m}|	& $\NevilleThetaN{x}{m}$
								& $\displaystyle \NevilleThetaN{x}{m}$	\\
\idxc{NevilleThetaS}\verb|{x}{m}|	& $\NevilleThetaS{x}{m}$
								& $\displaystyle \NevilleThetaS{x}{m}$	\\
\end{tabular}
\end{center}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Weierstrass Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Weierstrass Functions}

\begin{center}
\begin{tabular}{c}
%%%%%% Weierstrass Functions
\idxc{WeierstrassP}\verb|{z}{g_2,g_3}|
\\
	\begin{tabular}{cc}
	$\WeierstrassP{z}{g_2,g_3}$		& $\displaystyle \WeierstrassP{z}{g_2,g_3}$		\\
	\end{tabular}
\\
\\
\idxc{WeierstrassPInv}\verb|{z}{g_2,g_3}|
\\
	\begin{tabular}{cc}
	$\WeierstrassPInv{z}{g_2,g_3}$		& $\displaystyle \WeierstrassPInv{z}{g_2,g_3}$		\\
	\end{tabular}
\\
\\
\idxc{WeierstrassPGenInv}\verb|{z_1}{z_2}{g_2}{g_3}|
\\
	\begin{tabular}{cc}
	$\WeierstrassPGenInv{z_1}{z_2}{g_2}{g_3}$
						& $\displaystyle \WeierstrassPGenInv{z_1}{z_2}{g_2}{g_3}$
													\\
	\end{tabular}
\\
\\
\idxc{WeierstrassSigma}\verb|{z}{g_2,g_3}|
\\
	\begin{tabular}{cc}
	$\WeierstrassSigma{z}{g_2,g_3}$	& $\displaystyle \WeierstrassSigma{z}{g_2,g_3}$	\\
	\end{tabular}
\\
\\
\idxc{AssocWeierstrassSigma}\verb|{n}{z}{g_2}{g_3}|
\\
\idxc{WeiSigma}\verb|{n,z}{g_2,g_3}|
\\
	\begin{tabular}{cc}
	$\AssocWeierstrassSigma{n}{z}{g_2}{g_3}$
						& $\displaystyle \WeiSigma{n,z}{g_2,g_3}$
													\\
	\end{tabular}
\\
\\
\idxc{WeierstrassZeta}\verb|{z}{g_2,g_3}|
\\
	\begin{tabular}{cc}
	$\WeierstrassZeta{z}{g_2,g_3}$		& $\displaystyle \WeierstrassZeta{z}{g_2,g_3}$		\\
	\end{tabular}
\\
\\
\idxc{WeierstrassHalfPeriods}\verb|{g_2,g_3}|
\\
	\begin{tabular}{cc}
	$\WeierstrassHalfPeriods{g_2,g_3}$	& $\displaystyle \WeierstrassHalfPeriods{g_2,g_3}$	\\
	\end{tabular}
\\
\\
\idxc{WeierstrassInvariants}\verb|{\omega_1,\omega_3}|
\\
	\begin{tabular}{cc}
	$\WeierstrassInvariants{\omega_1,\omega_3}$
						& $\displaystyle \WeierstrassInvariants{\omega_1,\omega_3}$
													\\
	\end{tabular}
\\
\end{tabular}

\vspace{1.0cm}

\begin{tabular}{c}
\verb|\Style{WeierstrassPHalfPeriodValuesDisplay=sf}| (Default)%
\Style{WeierstrassPHalfPeriodValuesDisplay=sf}
\\
\idxc{WeierstrassPHalfPeriodValues}\verb|{g_2,g_3}|
\\
	\begin{tabular}{cc}
	$\WeierstrassPHalfPeriodValues{g_2,g_3}$
						& $\displaystyle \WeierstrassPHalfPeriodValues{g_2,g_3}$
													\\
	\end{tabular}
\\
\\
\\
\verb|\Style{WeierstrassPHalfPeriodValuesDisplay=ff}|%
\Style{WeierstrassPHalfPeriodValuesDisplay=ff}
\\
\idxc{WeierstrassPHalfPeriodValues}\verb|{g_2,g_3}|
\\
	\begin{tabular}{cc}
	$\WeierstrassPHalfPeriodValues{g_2,g_3}$
						& $\displaystyle \WeierstrassPHalfPeriodValues{g_2,g_3}$
													\\
	\end{tabular}
\\
\end{tabular}

\vspace{1cm}

\begin{tabular}{c}
\verb|\Style{WeierstrassZetaHalfPeriodValuesDisplay=sf}| (Default)%
\Style{WeierstrassZetaHalfPeriodValuesDisplay=sf}
\\
\idxc{WeierstrassZetaHalfPeriodValues}\verb|{g_2,g_3}|
\\
	\begin{tabular}{cc}
	$\WeierstrassZetaHalfPeriodValues{g_2,g_3}$
						& $\displaystyle \WeierstrassZetaHalfPeriodValues{g_2,g_3}$
													\\
	\end{tabular}
\\
\\
\\
\verb|\Style{WeierstrassZetaHalfPeriodValuesDisplay=ff}|%
\Style{WeierstrassZetaHalfPeriodValuesDisplay=ff}
\\
\idxc{WeierstrassZetaHalfPeriodValues}\verb|{g_2,g_3}|
\\
	\begin{tabular}{cc}
	$\WeierstrassZetaHalfPeriodValues{g_2,g_3}$
						& $\displaystyle \WeierstrassZetaHalfPeriodValues{g_2,g_3}$
													\\
	\end{tabular}
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Jacobi Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Jacobi Functions}
\index{Jacobi Functions!Inverse}

\begin{center}
\begin{tabular}{ccc}
\headerRow
%%%%%% Jacobi Functions
% am(z | m)
\idxc{JacobiAmplitude}\verb|{z}{m}|	& $\JacobiAmplitude{z}{m}$
								& $\displaystyle \JacobiAmplitude{z}{m}$
													\\
% cd(z | m)
\idxc{JacobiCD}\verb|{z}{m}|		& $\JacobiCD{z}{m}$	& $\displaystyle \JacobiCD{z}{m}$	\\
\idxc{JacobiCDInv}\verb|{z}{m}|	& $\JacobiCDInv{z}{m}$	& $\displaystyle \JacobiCDInv{z}{m}$	\\
% cn(z | m)
\idxc{JacobiCN}\verb|{z}{m}|		& $\JacobiCN{z}{m}$	& $\displaystyle \JacobiCN{z}{m}$	\\
\idxc{JacobiCNInv}\verb|{z}{m}|	& $\JacobiCNInv{z}{m}$	& $\displaystyle \JacobiCNInv{z}{m}$	\\
% cs(z | m)
\idxc{JacobiCS}\verb|{z}{m}|		& $\JacobiCS{z}{m}$	& $\displaystyle \JacobiCS{z}{m}$	\\
\idxc{JacobiCSInv}\verb|{z}{m}|	& $\JacobiCSInv{z}{m}$	& $\displaystyle \JacobiCSInv{z}{m}$	\\
% dc(z | m)
\idxc{JacobiDC}\verb|{z}{m}|		& $\JacobiDC{z}{m}$	& $\displaystyle \JacobiDC{z}{m}$	\\
\idxc{JacobiDCInv}\verb|{z}{m}|	& $\JacobiDCInv{z}{m}$	& $\displaystyle \JacobiDCInv{z}{m}$	\\
% dn(z | m)
\idxc{JacobiDN}\verb|{z}{m}|		& $\JacobiDN{z}{m}$	& $\displaystyle \JacobiDN{z}{m}$	\\
\idxc{JacobiDNInv}\verb|{z}{m}|	& $\JacobiDNInv{z}{m}$	& $\displaystyle \JacobiDNInv{z}{m}$	\\
% dn(z | m)
\idxc{JacobiDS}\verb|{z}{m}|		& $\JacobiDS{z}{m}$	& $\displaystyle \JacobiDS{z}{m}$	\\
\idxc{JacobiDSInv}\verb|{z}{m}|	& $\JacobiDSInv{z}{m}$	& $\displaystyle \JacobiDSInv{z}{m}$	\\
% nc(z | m)
\idxc{JacobiNC}\verb|{z}{m}|		& $\JacobiNC{z}{m}$	& $\displaystyle \JacobiNC{z}{m}$	\\
\idxc{JacobiNCInv}\verb|{z}{m}|	& $\JacobiNCInv{z}{m}$	& $\displaystyle \JacobiNCInv{z}{m}$	\\
% nd(z | m)
\idxc{JacobiND}\verb|{z}{m}|		& $\JacobiND{z}{m}$	& $\displaystyle \JacobiND{z}{m}$	\\
\idxc{JacobiNDInv}\verb|{z}{m}|	& $\JacobiNDInv{z}{m}$	& $\displaystyle \JacobiNDInv{z}{m}$	\\
% ns(z | m)
\idxc{JacobiNS}\verb|{z}{m}|		& $\JacobiNS{z}{m}$	& $\displaystyle \JacobiNS{z}{m}$	\\
\idxc{JacobiNSInv}\verb|{z}{m}|	& $\JacobiNSInv{z}{m}$	& $\displaystyle \JacobiNSInv{z}{m}$	\\
% sc(z | m)
\idxc{JacobiSC}\verb|{z}{m}|		& $\JacobiSC{z}{m}$	& $\displaystyle \JacobiSC{z}{m}$	\\
\idxc{JacobiSCInv}\verb|{z}{m}|	& $\JacobiSCInv{z}{m}$	& $\displaystyle \JacobiSCInv{z}{m}$	\\
% sd(z | m)
\idxc{JacobiSD}\verb|{z}{m}|		& $\JacobiSD{z}{m}$	& $\displaystyle \JacobiSD{z}{m}$	\\
\idxc{JacobiSDInv}\verb|{z}{m}|	& $\JacobiSDInv{z}{m}$	& $\displaystyle \JacobiSDInv{z}{m}$	\\
% sn(z | m)
\idxc{JacobiSN}\verb|{z}{m}|		& $\JacobiSN{z}{m}$	& $\displaystyle \JacobiSN{z}{m}$	\\
\idxc{JacobiSNInv}\verb|{z}{m}|	& $\JacobiSNInv{z}{m}$	& $\displaystyle \JacobiSNInv{z}{m}$	\\
\end{tabular}
\end{center}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Modular Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Modular Functions}

\begin{center}
\begin{tabular}{ccc}
\headerRow
%%%%%% Modular Functions
\idxc{DedekindEta}\verb|{z}|		& $\DedekindEta{z}$	& $\displaystyle \DedekindEta{z}$	\\
\idxc{KleinInvariantJ}\verb|{z}|	& $\KleinInvariantJ{z}$	& $\displaystyle \KleinInvariantJ{z}$	\\
\idxc{ModularLambda}\verb|{z}|		& $\ModularLambda{z}$	& $\displaystyle \ModularLambda{z}$	\\
\idxc{EllipticNomeQ}\verb|{z}|		& $\EllipticNomeQ{z}$	& $\displaystyle \EllipticNomeQ{z}$	\\
\idxc{EllipticNomeQInv}\verb|{z}|	& $\EllipticNomeQInv{z}$
								& $\displaystyle \EllipticNomeQInv{z}$	\\
\end{tabular}
\end{center}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Arithmetic Geometric Mean}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Arithmetic Geometric Mean}

\begin{center}
\begin{tabular}{ccc}
\headerRow
%%%%%% Arithmetic Geometric Mean
\idxc{ArithGeoMean}\verb|{a}{b}|	& $\ArithGeoMean{a}{b}$	& $\displaystyle \ArithGeoMean{a}{b}$	\\
\end{tabular}
\end{center}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Elliptic Exp and Log}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Elliptic!Exponential}
\index{Elliptic!Logarithm}

\begin{center}
\begin{tabular}{ccc}
\headerRow
%%%%%% Elliptic Exp and Log
\idxc{EllipticExp}\verb|{x}{a,b}|	& $\EllipticExp{x}{a,b}$
								& $\displaystyle \EllipticExp{x}{a,b}$	\\
% elog(z_1, z_2; a,b)
\idxc{EllipticLog}\verb|{x,y}{a,b}|
					& $\EllipticLog{x,y}{a,b}$
								& $\displaystyle \EllipticLog{x,y}{a,b}$
													\\
\end{tabular}
\end{center}












%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\subsection{Zeta Functions and Polylogarithms}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Zeta!Functions}
\index{Polylogarithm}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Zeta Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Zeta!Riemann}
\index{Zeta!Hurwitz}
\index{Zeta}

\begin{center}
\begin{tabular}{ccc}
\headerRow
%%%%%% Riemann Zeta Function
\idxc{RiemannZeta}\verb|{s}|	& $\RiemannZeta{s}$		& $\displaystyle \RiemannZeta{s}$		\\
\idxc{Zeta}\verb|{s}|		& $\Zeta{s}$			& $\displaystyle \Zeta{s}$			\\
														\\
%%%%%% Hurwitz Zeta Function
\idxc{HurwitzZeta}\verb|{s}{a}|	& $\HurwitzZeta{s}{a}$		& $\displaystyle \HurwitzZeta{s}{a}$		\\
\idxc{Zeta}\verb|{s,a}|		& $\Zeta{s,a}$			& $\displaystyle \Zeta{s,a}$			\\
														\\
%%%%%% Riemann-Siegel Theta Function
\idxc{RiemannSiegelTheta}\verb|{x}|
				& $\RiemannSiegelTheta{x}$	& $\displaystyle \RiemannSiegelTheta{x}$	\\
%%%%%% Riemann-Siegel Z Function
\idxc{RiemannSiegelZ}\verb|{x}|	& $\RiemannSiegelZ{x}$		& $\displaystyle \RiemannSiegelZ{x}$		\\
%%%%%% Stieltjes Constant [\gamma_n]
\idxc{StieltjesGamma}\verb|{n}|	& $\StieltjesGamma{n}$		& $\displaystyle \StieltjesGamma{n}$		\\
%%%%%% Lerch transcendent [\Phi(z,s,a)]
\idxc{LerchPhi}\verb|{z}{s}{a}|	& $\LerchPhi{z}{s}{a}$		& $\displaystyle \LerchPhi{z}{s}{a}$		\\
														\\
%%%%%% Nielsen Polylogarithm [S_\nu^p(z)]
\idxc{NielsenPolyLog}\verb|{\nu}{p}{z}|
				& $\NielsenPolyLog{\nu}{p}{z}$	& $\displaystyle \NielsenPolyLog{\nu}{p}{z}$	\\
\idxc{PolyLog}\verb|{\nu,p,z}|	& $\PolyLog{\nu,p,z}$		& $\displaystyle \PolyLog{\nu,p,z}$		\\
														\\
%%%%%% Polylogarithm [Li_\nu (z)]
\idxc{PolyLog}\verb|{\nu,z}|	& $\PolyLog{\nu,z}$		& $\displaystyle \PolyLog{\nu,z}$		\\
%%%%%% Dilogarithm [\PolyLog{2,x}]
\idxc{DiLog}\verb|{z}|		& $\DiLog{z}$			& $\displaystyle \DiLog{z}$			\\
\end{tabular}
\end{center}







%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\subsection{Mathieu Functions and Characteristics}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Mathieu!Functions}
\index{Mathieu!Characteristics}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Mathieu Functions}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{center}
\begin{tabular}{ccc}
\headerRow
%%%%%% Mathieu Functions
%%%%%%%% Even Mathieu Function Ce(a,q,z)
\idxc{MathieuC}\verb|{a}{q}{z}|		& $\MathieuC{a}{q}{z}$		& $\displaystyle \MathieuC{a}{q}{z}$	\\
%%%%%%%% Odd Mathieu Function Se(a,q,z)
\idxc{MathieuS}\verb|{a}{q}{z}|		& $\MathieuS{a}{q}{z}$		& $\displaystyle \MathieuS{a}{q}{z}$	\\
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Mathieu Characteristics}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{center}
\begin{tabular}{ccc}
\headerRow
%%%%%% Mathieu Characteristics
%%%%%%%% Characteristic Value of Even Mathieu Fucntion a_r(q)
\idxc{MathieuCharacteristicA}\verb|{r}{q}|
			& $\MathieuCharacteristicA{r}{q}$	& $\displaystyle \MathieuCharacteristicA{r}{q}$	\\
\idxc{MathieuCharisticA}\verb|{r}{q}|
			& $\MathieuCharisticA{r}{q}$		& $\displaystyle \MathieuCharisticA{r}{q}$	\\
														\\
%%%%%%%% Characteristic Value of Even Mathieu Fucntion b_r(q)
\idxc{MathieuCharacteristicB}\verb|{r}{q}|
			& $\MathieuCharacteristicB{r}{q}$	& $\displaystyle \MathieuCharacteristicB{r}{q}$	\\
\idxc{MathieuCharisticB}\verb|{r}{q}|
			& $\MathieuCharisticB{r}{q}$		& $\displaystyle \MathieuCharisticB{r}{q}$	\\
														\\
%%%%%%%% Characteristic Exponent of a Mathieu Fucntion r(a,q)
\idxc{MathieuCharacteristicExponent}\verb|{a}{q}|
			& $\MathieuCharacteristicExponent{a}{q}$
								& $\displaystyle \MathieuCharacteristicExponent{a}{q}$
														\\
\idxc{MathieuCharisticExp}\verb|{a}{q}|
			& $\MathieuCharisticExp{a}{q}$
								& $\displaystyle \MathieuCharisticExp{a}{q}$
														\\
\end{tabular}
\end{center}









%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\subsection{Complex Components}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Complex Components}

\begin{center}
\begin{tabular}{ccc}
\headerRow
\idxc{Abs}\verb|{z}|		& $\Abs{z}$	& $\displaystyle \Abs{z}$	\\
\idxc{Arg}\verb|{z}|		& $\Arg{z}$	& $\displaystyle \Arg{z}$	\\
\idxc{Conj}\verb|{z}|		& $\Conj{z}$	& $\displaystyle \Conj{z}$	\\
\Style{Conjugate=bar}%
\verb|\Style{Conjugate=bar}|%
\idxc{Conj}\verb|{z}|		& $\Conj{z}$	& $\displaystyle \Conj{z}$	\\
\Style{Conjugate=overline}%
\verb|\Style{Conjugate=overline}|%
\idxc{Conj}\verb|{z}|		& $\Conj{z}$	& $\displaystyle \Conj{z}$	\\
\idxc{Real}\verb|{z}|		& $\Real{z}$	& $\displaystyle \Real{z}$	\\
\idxc{Imag}\verb|{z}|		& $\Imag{z}$	& $\displaystyle \Imag{z}$	\\
\idxc{Sign}\verb|{z}|		& $\Sign{z}$	& $\displaystyle \Sign{z}$	\\
\end{tabular}
\end{center}









%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\subsection{Number Theory Functions}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Number Theory}
\index{Functions!Number Theory}
\index{Totient Function}
\index{Euler Totient Function}
\index{Moebius Function}
\index{Jacobi!Symbol}
\index{Symbol!Jacobi}
\index{Charmicheal Lambda Function}
\index{Lambda Function!Charmicheal}

\begin{center}
\begin{tabular}{ccc}
\headerRow
\idxc{FactorInteger}\verb|{n}|		& $\FactorInteger{n}$	& $\displaystyle \FactorInteger{n}$	\\
\idxc{Factors}\verb|{n}|		& $\Factors{n}$		& $\displaystyle \Factors{n}$		\\
													\\
%%%%%% Divisors
\idxc{Divisors}\verb|{n}|		& $\Divisors{n}$	& $\displaystyle \Divisors{n}$		\\
%%%%%% Prime
\idxc{Prime}\verb|{n}|			& $\Prime{n}$		& $\displaystyle \Prime{n}$		\\
%%%%%% pi(x)
\idxc{PrimePi}\verb|{x}|		& $\PrimePi{x}$		& $\displaystyle \PrimePi{x}$		\\
%%%%%% Sum of divisor powers \DivisorSigma{k}{n}
\idxc{DivisorSigma}\verb|{k}{n}|	& $\DivisorSigma{k}{n}$	& $\displaystyle \DivisorSigma{k}{n}$	\\
%%%%%% Euler Totient Function
\idxc{EulerPhi}\verb|{n}|		& $\EulerPhi{n}$	& $\displaystyle \EulerPhi{n}$		\\
%%%%%% Moebius Function
\idxc{MoebiusMu}\verb|{n}|		& $\MoebiusMu{n}$	& $\displaystyle \MoebiusMu{n}$		\\
%%%%%% Jacobi Symbol \JacobiSymbol{n}{m}
\idxc{JacobiSymbol}\verb|{n}{m}|	& $\JacobiSymbol{n}{m}$	& $\displaystyle \JacobiSymbol{n}{m}$	\\
													\\
%%%%%% Carmichael Lambda Function
\idxc{CarmichaelLambda}\verb|{n}|	& $\CarmichaelLambda{n}$
								& $\displaystyle \CarmichaelLambda{n}$	\\
\end{tabular}

\begin{tabular}{c}
\idxc{DigitCount}\verb|{n}{b}|
\\
	\begin{tabular}{cc}
	{\bf Inline:}	& $\DigitCount{n}{b}$			\\
	{\bf Display:}	& $\displaystyle \DigitCount{n}{b}$	\\
	\end{tabular}
\\
\\
\idxc{DigitCount}\verb|{n}{6}|
\\
	\begin{tabular}{cc}
	{\bf Inline:}	& $\DigitCount{n}{6}$			\\
	{\bf Display:}	& $\displaystyle \DigitCount{n}{6}$	\\
	\end{tabular}
\end{tabular}
\end{center}






%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\subsection{Generalized Functions}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Generalized Functions}
\index{Functions!Generalized}
\index{Heaviside Step}
%\index{Functions!Heaviside Step}
\index{Unit Step}
%\index{Functions!Unit Step}

\begin{center}
\begin{tabular}{ccc}
\headerRow
%%%%%% Dirac Delta Function
\idxc{DiracDelta}\verb|{x}|		& $\DiracDelta{x}$		& $\displaystyle \DiracDelta{x}$	\\
\idxc{DiracDelta}\verb|{x_1, x_2}|	& $\DiracDelta{x_1, x_2}$	& $\displaystyle \DiracDelta{x_1, x_2}$	\\
														\\
%%%%%% Heaviside Step Function
\idxc{HeavisideStep}\verb|{x}|		& $\HeavisideStep{x}$		& $\displaystyle \HeavisideStep{x}$	\\
\idxc{HeavisideStep}\verb|{x, y}|	& $\HeavisideStep{x,y}$		& $\displaystyle \HeavisideStep{x,y}$	\\
\idxc{UnitStep}\verb|{x}|		& $\UnitStep{x}$		& $\displaystyle \UnitStep{x}$		\\
\idxc{UnitStep}\verb|{x,y}|		& $\UnitStep{x,y}$		& $\displaystyle \UnitStep{x,y}$	\\
\end{tabular}
\end{center}






%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\subsection{Calculus Functions}
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Calculus}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Derivatives}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Calculus!Derivatives}
\index{Derivatives!Total}
\index{Total Derivatives}

\begin{center}

\begin{tabular}{c}
\verb|\Style{DDisplayFunc=inset,DShorten=true}| (Default)%
\Style{DDisplayFunc=inset,DShorten=true}							\\
												\\
\begin{tabular}{ccc}
\idxc{D}\verb|{f}{x}|			& $\D{f}{x}$		& $\displaystyle \D{f}{x}$	\\
												\\
\idxc{D}\verb|[n]{f}{x}|		& $\D[n]{f}{x}$		& $\displaystyle \D[n]{f}{x}$	\\
												\\
\end{tabular}
\end{tabular}

\vspace{.5cm}

\begin{tabular}{c}
\verb|\Style{DDisplayFunc=outset,DShorten=false}|%
\Style{DDisplayFunc=outset,DShorten=false}							\\
												\\
\begin{tabular}{ccc}
\idxc{D}\verb|{f}{x}|			& $\D{f}{x}$		& $\displaystyle \D{f}{x}$	\\
												\\
\idxc{D}\verb|[n]{f}{x}|		& $\D[n]{f}{x}$		& $\displaystyle \D[n]{f}{x}$	\\
												\\
\idxc{D}\verb|{f}{x,y,z}|		& $\D{f}{x,y,z}$	& $\displaystyle \D{f}{x,y,z}$	\\
												\\
\idxc{D}\verb|[2,n,3]{f}{x,y,z}|	& $\D[2,n,3]{f}{x,y,z}$	& $\displaystyle \D[2,n,3]{f}{x,y,z}$	
												\\
												\\
\idxc{D}\verb|[1,n,3]{f}{x,y,z}|	& $\D[1,n,3]{f}{x,y,z}$	& $\displaystyle \D[1,n,3]{f}{x,y,z}$
												\\
\end{tabular}
\end{tabular}

\vspace{.5cm}

\begin{tabular}{c}
\verb|\Style{DDisplayFunc=outset,DShorten=true}|%
\Style{DDisplayFunc=outset,DShorten=true}							\\
												\\
\begin{tabular}{ccc}
\idxc{D}\verb|{f}{x}|			& $\D{f}{x}$		& $\displaystyle \D{f}{x}$	\\
												\\
\idxc{D}\verb|[n]{f}{x}|		& $\D[n]{f}{x}$		& $\displaystyle \D[n]{f}{x}$	\\
												\\
\idxc{D}\verb|{f}{x,y,z}|		& $\D{f}{x,y,z}$	& $\displaystyle \D{f}{x,y,z}$	\\
												\\
\idxc{D}\verb|[2,n,3]{f}{x,y,z}|	& $\D[2,n,3]{f}{x,y,z}$	& $\displaystyle \D[2,n,3]{f}{x,y,z}$	
												\\
												\\
\idxc{D}\verb|[1,n,3]{f}{x,y,z}|	& $\D[1,n,3]{f}{x,y,z}$	& $\displaystyle \D[1,n,3]{f}{x,y,z}$
												\\
\end{tabular}
\end{tabular}

\vspace{0.5cm}

\begin{tabular}{c}
\verb|\Style{DDisplayFunc=inset,DShorten=true}|
\Style{DDisplayFunc=inset,DShorten=true}							\\
												\\
\begin{tabular}{ccc}
\idxc{D}\verb|{f}{x}|			& $\D{f}{x}$		& $\displaystyle \D{f}{x}$	\\
												\\
\idxc{D}\verb|[n]{f}{x}|		& $\D[n]{f}{x}$		& $\displaystyle \D[n]{f}{x}$	\\
												\\
\idxc{D}\verb|{f}{x,y,z}|		& $\D{f}{x,y,z}$	& $\displaystyle \D{f}{x,y,z}$	\\
												\\
\idxc{D}\verb|[2,n,3]{f}{x,y,z}|	& $\D[2,n,3]{f}{x,y,z}$	& $\displaystyle \D[2,n,3]{f}{x,y,z}$	
												\\
												\\
\idxc{D}\verb|[1,n,3]{f}{x,y,z}|	& $\D[1,n,3]{f}{x,y,z}$	& $\displaystyle \D[1,n,3]{f}{x,y,z}$
\end{tabular}
\end{tabular}

\end{center}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Partial Derivatives}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Calculus!Derivatives}
\index{Derivatives!Partial}
\index{Partial Derivatives}

\begin{center}

\begin{tabular}{c}
\verb|\Style{DDisplayFunc=inset,DShorten=true}| (Default)%
\Style{DDisplayFunc=inset,DShorten=true}									\\
														\\
\begin{tabular}{ccc}
\idxc{pderiv}\verb|{f}{x}|		& $\pderiv{f}{x}$		& $\displaystyle \pderiv{f}{x}$		\\
														\\
\idxc{pderiv}\verb|[n]{f}{x}|		& $\pderiv[n]{f}{x}$		& $\displaystyle \pderiv[n]{f}{x}$	\\
														\\
\end{tabular}
\end{tabular}

\vspace{.5cm}

\begin{tabular}{c}
\verb|\Style{DDisplayFunc=outset,DShorten=false}|%
\Style{DDisplayFunc=outset,DShorten=false}									\\
														\\
\begin{tabular}{ccc}
\idxc{pderiv}\verb|{f}{x}|		& $\pderiv{f}{x}$		& $\displaystyle \pderiv{f}{x}$		\\
														\\
\idxc{pderiv}\verb|[n]{f}{x}|		& $\pderiv[n]{f}{x}$		& $\displaystyle \pderiv[n]{f}{x}$	\\
														\\
\idxc{pderiv}\verb|{f}{x,y,z}|		& $\pderiv{f}{x,y,z}$		& $\displaystyle \pderiv{f}{x,y,z}$	\\
														\\
\idxc{pderiv}\verb|[2,n,3]{f}{x,y,z}|	& $\pderiv[2,n,3]{f}{x,y,z}$	& $\displaystyle \pderiv[2,n,3]{f}{x,y,z}$	
														\\
														\\
\idxc{pderiv}\verb|[1,n,3]{f}{x,y,z}|	& $\pderiv[1,n,3]{f}{x,y,z}$	& $\displaystyle \pderiv[1,n,3]{f}{x,y,z}$
														\\
\end{tabular}
\end{tabular}

\vspace{.5cm}

\begin{tabular}{c}
\verb|\Style{DDisplayFunc=outset,DShorten=true}|%
\Style{DDisplayFunc=outset,DShorten=true}									\\
														\\
\begin{tabular}{ccc}
\idxc{pderiv}\verb|{f}{x}|		& $\pderiv{f}{x}$		& $\displaystyle \pderiv{f}{x}$		\\
														\\
\idxc{pderiv}\verb|[n]{f}{x}|		& $\pderiv[n]{f}{x}$		& $\displaystyle \pderiv[n]{f}{x}$	\\
														\\
\idxc{pderiv}\verb|{f}{x,y,z}|		& $\pderiv{f}{x,y,z}$		& $\displaystyle \pderiv{f}{x,y,z}$	\\
														\\
\idxc{pderiv}\verb|[2,n,3]{f}{x,y,z}|	& $\pderiv[2,n,3]{f}{x,y,z}$	& $\displaystyle \pderiv[2,n,3]{f}{x,y,z}$	
														\\
														\\
\idxc{pderiv}\verb|[1,n,3]{f}{x,y,z}|	& $\pderiv[1,n,3]{f}{x,y,z}$	& $\displaystyle \pderiv[1,n,3]{f}{x,y,z}$
														\\
\end{tabular}
\end{tabular}

\vspace{0.5cm}

\begin{tabular}{c}
\verb|\Style{DDisplayFunc=inset,DShorten=true}|
\Style{DDisplayFunc=inset,DShorten=true}									\\
														\\
\begin{tabular}{ccc}
\idxc{pderiv}\verb|{f}{x}|		& $\pderiv{f}{x}$		& $\displaystyle \pderiv{f}{x}$		\\
														\\
\idxc{pderiv}\verb|[n]{f}{x}|		& $\pderiv[n]{f}{x}$		& $\displaystyle \pderiv[n]{f}{x}$	\\
														\\
\idxc{pderiv}\verb|{f}{x,y,z}|		& $\pderiv{f}{x,y,z}$		& $\displaystyle \pderiv{f}{x,y,z}$	\\
														\\
\idxc{pderiv}\verb|[2,n,3]{f}{x,y,z}|	& $\pderiv[2,n,3]{f}{x,y,z}$	& $\displaystyle \pderiv[2,n,3]{f}{x,y,z}$	
														\\
														\\
\idxc{pderiv}\verb|[1,n,3]{f}{x,y,z}|	& $\pderiv[1,n,3]{f}{x,y,z}$	& $\displaystyle \pderiv[1,n,3]{f}{x,y,z}$
\end{tabular}
\end{tabular}

\end{center}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Integrals}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Calculus!Integrals}
\index{Integrals}
\index{Integrals!Definite}
\index{Integrals!Indefinite}

\begin{center}
\begin{tabular}{ccc}
\headerRow
												\\
\idxc{Integrate}\verb|{f}{x}|	& $\Integrate{f}{x}$	& $\displaystyle \Integrate{f}{x}$
												\\
												\\
\idxc{Int}\verb|{f(x)}{x}|	& $\Int{f(x)}{x}$	& $\displaystyle \Int{f(x)}{x}$		\\
												\\
\idxc{Int}\verb|{f}{S,C}|	& $\Int{f}{S,C}$	& $\displaystyle \Int{f}{S,C}$		\\
												\\
\idxc{Int}\verb|{f(x)}{x,a,b}|	& $\Int{f(x)}{x,a,b}$	& $\displaystyle \Int{f(x)}{x,a,b}$
												\\
												\\
\idxc{Int}\verb|{f(x)}{x,0,b}|	& $\Int{f(x)}{x,0,b}$	& $\displaystyle \Int{f(x)}{x,0,b}$
												\\
\idxc{Int}\verb|{\Int{f(x)}{x,0,y}}{y,0,z}|
				& $\Int{ \Int{f(x)}{x,0,y} }{y,0,z}$	
							& $\displaystyle \Int{ \Int{f(x)}{x,0,y} }{y,0,z}$
\end{tabular}
\end{center}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Sums and Products}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{center}
\begin{tabular}{ccc}
\headerRow
												\\
\idxc{Sum}\verb|{a(k)}{k}|	& $\Sum{a(k)}{k}$	& $\displaystyle \Sum{a(k)}{k}$	\\
												\\
\idxc{Sum}\verb|{a(k)}{k,1,n}|	& $\Sum{a(k)}{k,1,n}$	& $\displaystyle \Sum{a(k)}{k,1,n}$
												\\
												\\
\idxc{Prod}\verb|{a(k)}{k}|	& $\Prod{a(k)}{k}$	& $\displaystyle \Prod{a(k)}{k}$
												\\
												\\
\idxc{Prod}\verb|{a(k)}{k,1,n}|	& $\Prod{a(k)}{k,1,n}$	& $\displaystyle \Prod{a(k)}{k,1,n}$
\end{tabular}
\end{center}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
\subsubsection{Matrices}
%%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %%  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\index{Matrix!Identity}
\index{Matrices!Identity}

\begin{center}
\begin{tabular}{ccc}
\headerRow												\\
\idxc{IdentityMatrix}		& $\IdentityMatrix$	& $\displaystyle \IdentityMatrix$		\\
\verb|\Style{IdentityMatrixParen=p}| (Default)%
\Style{IdentityMatrixParen=p}										\\
\idxc{IdentityMatrix[2]}	& $\IdentityMatrix[2]$	& $\displaystyle \IdentityMatrix[2]$		\\
\verb|\Style{IdentityMatrixParen=b}|%
\Style{IdentityMatrixParen=b}										\\
\idxc{IdentityMatrix[2]}	& $\IdentityMatrix[2]$	& $\displaystyle \IdentityMatrix[2]$		\\
\verb|\Style{IdentityMatrixParen=br}|%
\Style{IdentityMatrixParen=br}										\\
\idxc{IdentityMatrix[2]}	& $\IdentityMatrix[2]$	& $\displaystyle \IdentityMatrix[2]$		\\
\verb|\Style{IdentityMatrixParen=none}|%
\Style{IdentityMatrixParen=none}									\\
\idxc{IdentityMatrix[2]}	& $\IdentityMatrix[2]$	& $\displaystyle \IdentityMatrix[2]$%
\Style{IdentityMatrixParen=p}										\\
\end{tabular}
\end{center}

\idxc{IdentityMatrix}\verb|[20]| yields

$$
\IdentityMatrix[20]
$$

\printindex

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[ REFERENCES ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%\newpage

%\begin{thebibliography}{hello}
%\end{thebibliography}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[ END REFERENCES ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\end{document}               % End of document